Characterizing and targeting glioblastoma neuron-tumor networks with retrograde tracing

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Glioblastomas are heterogeneous brain tumors, notorious for their invasive behavior and resistance to therapy. Neuron-to-glioma synapses have been identified to promote glioblastoma invasion and proliferation. However, a comprehensive characterization of tumor-connected neurons has been hampered by a lack of technologies. Here, we adapted retrograde tracing with a modified rabies virus system to characterize and manipulate connected neuron-tumor networks. Glioblastoma rapidly integrated into neural circuits across the brain engaging in widespread functional communication, with acetylcholinergic and glutamatergic neurons driving glioblastoma progression. We uncovered patient-specific and tumor cell state-dependent differences in synaptogenic gene expression driving neuron-tumor connectivity and subsequent invasivity. Importantly, radiotherapy enhanced neuron-tumor connectivity by increased neuronal activity. In turn, simultaneous inhibition of AMPA receptors and radiotherapy showed increased therapeutic effects, indicative of a role for neuron-to-glioma synapses in contributing to therapeutic resistance. Lastly, rabies-mediated genetic ablation of tumor-connected neurons halted glioblastoma progression, offering a novel viral strategy to target glioblastoma. Together, this study provides a comprehensive framework for basic research and clinical translation of synaptic neuron-cancer interactions to target glioblastoma.

Article activity feed