Live imaging of Alu elements reveals non-uniform euchromatin dynamics coupled to transcription

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Chromatin structure and dynamics are crucial for eukaryotic nuclear functions. Hi-C and related genomic assays have revealed chromatin conformations, such as A/B compartments, in fixed cells, but the dynamic motion of such structures is not well understood. Moreover, elucidating the relationship between the motion of chromatin and transcriptional activity is hampered by a lack of tools for specifically measuring the mobility of active euchromatin. Here, we introduce a CRISPR-based strategy for live imaging of the gene-rich A compartment by labeling Alu elements — a retrotransposon family enriched within the transcriptionally active A compartment. Surprisingly, within euchromatin, microscopy analysis reveals that Alu-rich regions do not correlate with lower local H2B density, and form irregular foci of a few hundred nanometers in diameter, underscoring the heterogeneity of euchromatin organization. Alu-rich (gene-rich) chromatin is also more mobile than Alu-poor (gene-poor) chromatin, and transcription inhibition by actinomycin D results in decreased chromatin mobility of Alu-rich regions. These observations highlight the complexity of chromatin organization and dynamics and connect them to transcriptional activity on a genome-wide scale.

Article activity feed