Translation of monosynaptic circuits underlying amygdala fMRI neurofeedback training

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background

fMRI neurofeedback targeting the amygdala is a promising therapeutical tool in psychiatry. It induces resting-state functional connectivity (rsFC) changes between the amygdala and regions of the salience and default mode networks (SN and DMN, respectively). We hypothesize these rsFC changes happen on the amygdala’s underlying anatomical circuits.

Methods

We used the coordinates from regions of interest (ROIs) from studies showing pre-to-post-neurofeedback changes in rsFC with the left amygdala. Using a cross-species brain parcellation, we identified the homologous locations in non-human primates. We injected bidirectional tracers in the amygdala of adult macaques and used bright- and dark-field microscopy to identify cells and axon terminals in each ROI. We also performed additional injections in specific ROIs to validate the results following amygdala injections and delineate potential disynaptic pathways. Finally, we used high-resolution diffusion MRI data from four post-mortem macaque brains and one in vivo human brain to translate our findings to the neuroimaging domain.

Results

The amygdala had significant monosynaptic connections with all the SN and DMN ipsilateral ROIs. Amygdala connections with the DMN contralateral ROIs are disynaptic through the hippocampus and parahippocampal gyrus. Diffusion MRI in both species benefitted from using the ground-truth tracer data to validate its findings, as we identified false-negative ipsilateral and false-positive contralateral connectivity results.

Conclusions

Amygdala neurofeedback modulates the SN and DMN through monosynaptic connections and disynaptic pathways - including hippocampal structures involved in the neurofeedback task. Neurofeedback may be a tool for rapid modulation and reinforcement of these anatomical connections, leading to clinical improvement.

Article activity feed