Redefining the role of Hypoxia-inducible factors (HIFs) in oxygen homeostasis

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Hypoxia-inducible factors (HIFs) are key regulators of intracellular oxygen homeostasis. The marked increase in HIFs activity in hypoxia as compared to normoxia, together with their transcriptional control of primary metabolic pathways, motivated the widespread view of HIFs as responsible for the cell’s metabolic adaptation to hypoxic stress. In this work, we suggest that this prevailing model of HIFs regulation is misleading. We propose an alternative model focused on understanding the dynamics of HIFs’ activity within its physiological context. Our model suggests that HIFs would not respond to but rather prevent the onset of hypoxic stress by regulating the traffic of electrons between catabolic substrates and oxygen. The explanatory power of our approach is patent in its interpretation of the Warburg effect, the tendency of tumor cells to favor anaerobic metabolism over respiration, even in fully aerobic conditions. This puzzling behavior is currently considered as an anomalous metabolic deviation. Our model predicts the Warburg effect as the expected homeostatic response of tumor cells to the abnormal increase in metabolic demand that characterizes malignant phenotypes. This alternative perspective prompts a redefinition of HIFs’ function and underscores the need to explicitly consider the cell’s metabolic activity in understanding its responses to changes in oxygen availability.

Article activity feed