Direct Ink Writing of Graphene Oxide Reinforced 13-93B1 Bioactive Glass Scaffolds for Bone Tissue Engineering Applications

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Graphene-reinforced bioactive glass scaffolds have gained significant attention in the field of bone tissue engineering due to their unique combination of mechanical strength, bioactivity, and electrical conductivity. Additive manufacturing techniques, such as 3D printing, provide a versatile platform for fabricating these scaffolds with precise control over their architecture and composition. Consequently, in this work, we have fabricated graphene oxide (GO)-reinforced 13-93B1 bioactive glass scaffold using the direct ink writing technique. A Pluronic F-127- based ink was prepared for scaffold fabrication, and its rheological properties were assessed for shear thinning behaviour, structural support, and recovery. Further, the fabricated scaffolds were characterized using micro-computed tomography, scanning electron microscopy, and energy dispersive x-ray spectroscopy. Additionally, computational fluid dynamics simulations with Dulbecco’s modified eagle medium and blood were performed to evaluate the perfusion kinetics of the scaffolds. The inclusion of GO enhanced the compressive strength of the fabricated scaffolds by ∼225%. The morphological characterization based on micro-computed tomography showed that additively manufactured scaffolds have appropriate porosity, pore size, pore throat size, and interconnectivity. The live-dead assay results showed no cytotoxicity towards C2C12 mouse myoblast cells. Also, cell adhesion and cell viability results show better cell growth on the nanocomposite scaffolds. Overall, the fabricated scaffold is found suitable for bone tissue engineering applications.

Article activity feed