Highly conserved brain vascular receptor ALPL mediates transport of engineered viral vectors across the blood-brain barrier

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Delivery of systemically administered therapeutics to the central nervous system (CNS) is restricted by the blood-brain barrier (BBB). Bioengineered Adeno-Associated Virus (AAV) capsids have been shown to penetrate the BBB with great efficacy in mouse and non-human primate models, but their translational potential is often limited by species selectivity and undefined mechanisms of action. Here, we apply our RNA-guided TRACER AAV capsid evolution platform to generate VCAP-102, an AAV9 variant with markedly increased brain tropism following intravenous delivery in both rodents and primates. VCAP-102 demonstrates a similar CNS tropism in cynomolgus macaque, african green monkey, marmoset and mouse, showing 20- to 400-fold increased transgene expression across multiple brain regions relative to AAV9. We demonstrate that the enhanced CNS tropism of VCAP-102 results from direct interaction with alkaline phosphatase (ALPL), a highly conserved membrane-associated protein expressed on the brain vasculature. VCAP-102 interacts with human, primate and murine ALPL isoforms, and ectopic expression of ALPL is sufficient to initiate receptor-mediated transcytosis of VCAP-102 in an in vitro transwell model. Our work identifies VCAP-102 as a cross-species CNS gene delivery vector with a strong potential for clinical translation and establishes ALPL as a brain delivery shuttle capable of efficient BBB transport to maximize CNS delivery of biotherapeutics.

Article activity feed