Competitive assembly resolves the stoichiometry of essential proteins in infectious HIV-1 virions

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

During assembly on the plasma membrane, HIV-1 virions incorporate Gag-Pol as well as gp120/gp41 trimers. The Pol region consists of protease, reverse transcriptase and integrase precursors which are essential enzymes required for maturation, reverse transcription, and integration of the viral genome in the next host. gp120/gp41 trimers catalyze the fusion of the virion with its next host. Only a fraction of released virions are infectious. The stoichiometry of gp120/gp41 and Gag-Pol proteins in HIV virions was previously measured using cryotomography and ratiometric protein analysis, but what is the stoichiometry of these proteins in infectious virions remained to be determined. Here we developed a method based on competition between infectious HIV backbones with noninfectious mutants and measured 100 ± 10 Gag-Pol and 15 ± 3 gp120/gp41 proteins incorporated in infectious virions assembled in HEK293 cells from NL4.3 HIV-1 backbone. Our measurements are in broad agreement with cryotomography and ratiometric protein analysis and therefore stoichiometry of gp120/gp41 and Gag-Pol in infectious virions is the same as all released virions. With the development of appropriate mutants and infectivity assays, our method is applicable to other infectious viruses.

Statement of significance

There are 30 million people who have succumbed to the AIDS pandemic with 600,000 additional deaths per year. HIV has an accelerated rate of mutational accumulation with the virus mutating out of neutralizing antibodies within the same patient making development of vaccines challenging. Like most enveloped viruses, only a fraction of released virions are infectious and the question of what selects these virions has remained a mystery. The method developed in this article will allow stoichiometric measurements on infectious virions and therefore allows further studies of causes of infectivity.

Article activity feed