Using RNA-targeting CRISPR-Cas13 and engineered U1 systems to reduce ABCA4 splice variants in Stargardt disease

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Dysregulation of the alternative splicing process results in aberrant mRNA transcripts, leading to dysfunctional proteins or nonsense-mediated decay that cause a wide range of mis-splicing diseases. Development of therapeutic strategies to target the alternative splicing process could potentially shift the mRNA splicing from disease isoforms to a normal isoform and restore functional protein. As a proof of concept, we focus on Stargardt disease (STGD1), an autosomal recessive inherited retinal disease caused by biallelic genetic variants in the ABCA4 gene. The splicing variants c.5461-10T>C and c.4773+3A>G in ABCA4 cause the skipping of exon 39-40 and exon 33-34 respectively. In this study, we compared the efficacy of different RNA-targeting systems to modulate these ABCA4 splicing defects, including four CRISPR-Cas13 systems (CASFx-1, CASFx-3, RBFOX1N-dCas13e-C and RBFOX1N-dPspCas13b-C) as well as an engineered U1 system (ExSpeU1). Using a minigene system containing ABCA4 variants in the human retinal pigment epithelium ARPE19, our results show that RBFOX1N-dPspCas13b-C is the best performing CRISPR-Cas system, which enabled up to 80% reduction of the mis-spliced ABCA4 c.5461-10T>C variants and up to 78% reduction of the ABCA4 c.4773+3A>G variants. In comparison, delivery of a single ExSpeU1 was able to effectively reduce the mis-spliced ABCA4 c.4773+3A>G variants by up to 84%. We observed that the effectiveness of CRISPR-based and U1 splicing regulation is strongly dependent on the sgRNA/snRNA targeting sequences, highlighting that optimal sgRNA/snRNA designing is crucial for efficient targeting of mis-spliced transcripts. Overall, our study demonstrated the potential of using RNA-targeting CRISPR-Cas technology and engineered U1 to reduce mis-spliced transcripts for ABCA4 , providing an important step to advance the development of gene therapy to treat STGD1.

Article activity feed