Temporal attention recruits fronto-cingulate cortex to amplify stimulus representations

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The human brain receives a continuous stream of input, but it faces significant constraints in its ability to process every item in a sequence of stimuli. Voluntary temporal attention can alleviate these constraints by using information about upcoming stimulus timing to selectively prioritize a task-relevant item over others in a sequence. But the neural mechanisms underlying this ability remain unclear. Here, we manipulated temporal attention to successive stimuli in a two-target temporal cueing task, while controlling for temporal expectation by using fully predictable stimulus timing. We recorded magnetoencephalography (MEG) in human observers and measured the effects of temporal attention on orientation representations of each stimulus using time-resolved multivariate decoding in both sensor and source space. Voluntary temporal attention enhanced the orientation representation of the first target 235-300 milliseconds after target onset. Unlike previous studies that did not isolate temporal attention from temporal expectation, we found no evidence that temporal attention enhanced early visual evoked responses. Instead, and unexpectedly, the primary source of enhanced decoding for attended stimuli in the critical time window was a contiguous region spanning left frontal cortex and cingulate cortex. The results suggest that voluntary temporal attention recruits cortical regions beyond the ventral stream at an intermediate processing stage to amplify the representation of a target stimulus, which may serve to protect it from subsequent interference by a temporal competitor.

Article activity feed