A binary trait model reveals the fitness effects of HIV-1 escape from T cell responses

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Natural selection often acts on multiple traits simultaneously. For example, the virus HIV-1 faces pressure to evade host immunity while also preserving replicative fitness. While past work has studied selection during HIV-1 evolution, it is challenging to quantitatively separate different contributions to fitness. This task is made more difficult because a single mutation can affect both immune escape and replication. Here, we develop an evolutionary model that disentangles the effects of escaping CD8 + T cell-mediated immunity, which we model as a binary trait, from other contributions to fitness. After validation in simulations, we applied this model to study within-host HIV-1 evolution in a clinical data set. We observed strong selection for immune escape, sometimes greatly exceeding past estimates, especially early in infection. Conservative estimates suggest that roughly half of HIV-1 fitness gains during the first months to years of infection can be attributed to T cell escape. Our approach is not limited to HIV-1 or viruses, and could be adapted to study the evolution of quantitative traits in other contexts.

Article activity feed