Direct pharmacological AMPK activation inhibits mucosal SARS-CoV-2 infection by reducing lipid metabolism, restoring autophagy flux and the type I IFN response

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

AMP-activated protein kinase (AMPK) plays a central role in regulating cell energy balance. When activated, AMPK supresses energy-consuming pathways such as lipid and protein synthesis while increasing nutrient availability through the activation of autophagy. These pathways downstream AMPK activation contribute to SARS-CoV-2 infection, which hijacks autophagy and accumulates lipid droplets in viral factories to support viral replication. Here, we assessed the antiviral activity of the direct pan-AMPK allosteric activator MK-8722 in vitro. MK-8722 efficiently inhibited infection of Alpha and Omicron SARS-CoV-2 variants in Vero76 and human bronchial epithelial Calu-3 cells at micromolar concentration. This inhibition relied on restoring the autophagic flux, which redirected newly synthesized viral proteins for degradation, and on a reduction in lipid metabolism, which affected the viral factories. Furthermore, MK-8722 treatment increased the type I interferon (IFN-I) response. Post-infection treatment with MK-8722 was enough to inhibit efficiently viral replication and restore the IFN-I response. Finally, MK-8722 treatment did not alter the SARS-CoV-2-specific CD8 + T cell response mounted upon Spike vaccination. Overall, by activating AMPK, MK-8722 acts as an effective antiviral against SARS-CoV-2 infection, even when applied post-exposure, paving the way for preclinical tests aimed at inhibiting viral replication and improving patients’ symptoms.

Article activity feed