Phosphate-binding pocket on cyclin B governs CDK substrate phosphorylation and mitotic timing

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Cell cycle progression is governed by complexes of the cyclin-dependent kinases (CDKs) and their regulatory subunits cyclin and Cks1. CDKs phosphorylate hundreds of substrates, often at multiple sites. Multisite phosphorylation depends on Cks1, which binds initial priming phosphorylation sites to promote secondary phosphorylation at other sites. Here, we describe a similar role for a recently discovered phosphate-binding pocket (PP) on B-type cyclins. Mutation of the PP in Clb2, the major mitotic cyclin of budding yeast, alters bud morphology and delays the onset of anaphase. Using phosphoproteomics in vivo and kinase reactions in vitro , we find that mutation of the PP reduces phosphorylation of several CDK substrates, including the Bud6 subunit of the polarisome and the Cdc16 and Cdc27 subunits of the anaphase-promoting complex/cyclosome. We conclude that the cyclin PP, like Cks1, controls the timing of multisite phosphorylation on CDK substrates, thereby helping to establish the robust timing of cell-cycle events.

Article activity feed