Stiffness Measurement of Retinal Capillaries and Subendothelial Matrix using Atomic Force Microscopy

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Retinal capillary degeneration is a clinical hallmark of the early stages of diabetic retinopathy (DR). Our recent studies have revealed that diabetes-induced increase in retinal capillary stiffness plays a crucial and previously unrecognized causal role in inflammation-mediated degeneration of retinal capillaries. Retinal capillary stiffening results from overexpression of lysyl oxidase, an enzyme that crosslinks and stiffens the subendothelial matrix. Since tackling DR at the early stage is expected to prevent or slow down DR progression and associated vision loss, subendothelial matrix and capillary stiffness represent relevant and novel therapeutic targets for early DR management. Further, direct measurement of retinal capillary stiffness can serve as a crucial preclinical validation step for the development of new imaging techniques for non-invasive assessment of retinal capillary stiffness in animal and human subjects. With this view in mind, we here provide a detailed protocol for the isolation and stiffness measurement of mouse retinal capillaries and retinal subendothelial matrix using atomic force microscopy.

Article activity feed