Physical-Chemical Features Selection Reveals That Differences in Dipeptide Compositions Correlate Most with Protein-Protein Interactions

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The ability to accurately predict protein-protein interactions is critically important for our understanding of major cellular processes. However, current experimental and computational approaches for identifying them are technically very challenging and still have limited success. We propose a new computational method for predicting protein-protein interactions using only primary sequence information. It utilizes a concept of physical-chemical similarity to determine which interactions will most probably occur. In our approach, the physical-chemical features of protein are extracted using bioinformatics tools for different organisms, and then they are utilized in a machine-learning method to identify successful protein-protein interactions via correlation analysis. It is found that the most important property that correlates most with the protein-protein interactions for all studied organisms is dipeptide amino acid compositions. The analysis is specifically applied to the bacterial two-component system that includes histidine kinase and transcriptional response regulators. Our theoretical approach provides a simple and robust method for quantifying the important details of complex mechanisms of biological processes.

Article activity feed