Resistance Gene Association and Inference Network (ReGAIN): A Bioinformatics Pipeline for Assessing Probabilistic Co-Occurrence Between Resistance Genes in Bacterial Pathogens

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The rampant rise of multidrug resistant (MDR) bacterial pathogens poses a severe health threat, necessitating innovative tools to unravel the complex genetic underpinnings of antimicrobial resistance. Despite significant strides in developing genomic tools for detecting resistance genes, a gap remains in analyzing organism-specific patterns of resistance gene co-occurrence. Addressing this deficiency, we developed the Resistance Gene Association and Inference Network (ReGAIN), a novel web-based and command line genomic platform that uses Bayesian network structure learning to identify and map resistance gene networks in bacterial pathogens. ReGAIN not only detects resistance genes using well- established methods, but also elucidates their complex interplay, critical for understanding MDR phenotypes. Focusing on ESKAPE pathogens, ReGAIN yielded a queryable database for investigating resistance gene co-occurrence, enriching resistome analyses, and providing new insights into the dynamics of antimicrobial resistance. Furthermore, the versatility of ReGAIN extends beyond antibiotic resistance genes to include assessment of co-occurrence patterns among heavy metal resistance and virulence determinants, providing a comprehensive overview of key gene relationships impacting both disease progression and treatment outcomes.

Graphical Abstract

Article activity feed