Rhodoquinone-dependent electron transport chain is essential for C. elegans survival in hydrogen sulfide environments

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Hydrogen sulfide (H2S) has traditionally been considered as an environmental toxin for animal lineages; yet, it plays a signaling role in various processes at low concentrations. Mechanisms controlling H2S in animals, especially in sulfide-rich environments, are not fully understood. The main detoxification pathway involves the conversion of H2S into less harmful forms, through a mitochondrial oxidation pathway. The first step of this pathway oxidizes sulfide and reduces ubiquinone (UQ) through sulfide-quinone oxidoreductase (SQRD/SQOR). Because H2S inhibits cytochrome oxidase and hence UQ regeneration, this pathway becomes compromised at high H2S concentrations. The free-living nematode C. elegans feeds on bacteria and can face high sulfide concentrations in its natural environment. This organism has an alternative ETC that uses rhodoquinone (RQ) as the lipidic electron transporter and fumarate as the final electron acceptor. In this study, we demonstrate that RQ is essential for survival in sulfide. RQ-less animals ( kynu-1 and coq-2e KO) cannot survive high H2S concentrations, while UQ-less animals ( clk-1 and coq-2a KO) exhibit recovery, even when provided with a UQ-deficient diet. Our findings highlight that sqrd-1 uses both benzoquinones and that RQ-dependent ETC confers a key advantage (RQ regeneration) over UQ in sulfide conditions. C. elegans also faces cyanide, another cytochrome oxidase inhibitor, whose detoxification leads to H2S production, via cysl-2 . Our study reveals that RQ delays killing by the HCN-producing bacteria Pseudomonas aeruginosa PAO1. These results underscore the fundamental role that RQ-dependent ETC serves as a biochemical adaptation to H2S environments, and to pathogenic bacteria producing cyanide and H2S toxins.

Article activity feed