An ability to respond begins with inner alignment: How phase synchronisation effects transitions to higher levels of agency

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

How do multiple active components at one level of organisation create agential wholes at higher levels of organisation? For example, in organismic development, how does the multi-scale autonomy of the organism arise from the interactions of the molecules, cells and tissues that an organism contains? And, in the major evolutionary transitions, how does a multicellular organism, for example, arise as an evolutionary unit from the selective interests of its unicellular ancestors? We utilise computational models as a way to think about this general question. We take a deliberately minimalistic notion of an agent: a competency to take one of two possible actions to minimise stress. Helping ourselves to this behaviour at the microscale, we focus on conditions where this same type of agency appears spontaneously at a higher level of organisation. We find that a simple process of positive feedback on the timing of individual responses, loosely analogous to the natural phase synchronisation of weakly coupled oscillators, causes such a transition in behaviour. The emergent collectives that arise become, quite suddenly, able to respond to their external stresses in the same (minimal) sense as the original microscale units. This effects a dramatic rescaling of the system behaviour, and a quantifiable increase in problem-solving competency, serving as a model of how higher-level agency emerges from a pool of lower-level agents or active matter. We discuss how this dynamical ‘waking-up’ of higher-level collectives, through the alignment of their internal dynamics, might relate to reproductive/cell-cycle synchronisation in evolutionary transitions and development.

Article activity feed