mTORC1 activity oscillates throughout the cell cycle promoting mitotic entry and differentially influencing autophagy induction

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Mechanistic Target of Rapamycin Complex 1 (mTORC1) is a master metabolic regulator that stimulates anabolic cell growth while suppressing catabolic processes such as autophagy. mTORC1 is active in most, if not all, proliferating eukaryotic cells. However, it remains unclear whether and how mTORC1 activity changes from one cell cycle phase to another. Here we tracked mTORC1 activity through the complete cell cycle and uncover oscillations in its activity. We find that mTORC1 activity peaks in S and G2, and is lowest in mitosis and G1. We further demonstrate that multiple mechanisms are involved in controlling this oscillation. The interphase oscillation is mediated through the TSC complex, an upstream negative regulator of mTORC1, but is independent of major known regulatory inputs to the TSC complex, including Akt, Mek/Erk, and CDK4/6 signaling. By contrast, suppression of mTORC1 activity in mitosis does not require the TSC complex, and instead involves CDK1-dependent control of the subcellular localization of mTORC1 itself. Functionally, we find that in addition to its well-established role in promoting progression through G1, mTORC1 also promotes progression through S and G2, and is important for satisfying the Wee1- and Chk1-dependent G2/M checkpoint to allow entry into mitosis. We also find that low mTORC1 activity in G1 sensitizes cells to autophagy induction in response to partial mTORC1 inhibition or reduced nutrient levels. Together these findings demonstrate that mTORC1 is differentially regulated throughout the cell cycle, with important phase-specific functional consequences in proliferating cells.

Article activity feed