Interferon-gamma induces epithelial reprogramming driving CXCL11-mediated T-cell migration

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The cytokine interferon-gamma plays a multifaceted role in intestinal immune responses ranging from anti- to proinflammatory depending on the setting. Here, using a 3D co-culture system based on human intestinal epithelial organoids, we explore the capacity of interferon-gamma exposure to reprogram intestinal epithelia and thereby directly modulate lymphocyte responses. Interferon-gamma treatment of organoids led to transcriptional reprogramming, marked by a switch to a proinflammatory gene expression profile, including transcriptional upregulation of the chemokines CXCL9, CXCL10, and CXCL11. Proteomic analysis of organoid-conditioned medium posttreatment confirmed chemokine secretion. Interferon-gamma treatment of organoids led to enhanced T-cell migration in a CXCL11-dependent manner without affecting T-cell activation status. Taken together, our results suggest a specific role for CXCL11 in T-cell recruitment that could be targeted to prevent T-cell trafficking to the inflamed intestine.

Article activity feed