Primary auditory cortex is necessary for the acquisition and expression of categorical behavior

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The primary auditory cortex (ACtx) is critically involved in the association of sensory information with specific behavioral outcomes. Such sensory-guided behaviors are necessarily brain-wide endeavors, requiring a plethora of distinct brain areas, including those that are involved in aspects of decision making, motor planning, motor initiation, and reward prediction. ACtx comprises a number of distinct excitatory cell-types that allow for the brain-wide propagation of behaviorally-relevant sensory information. Exactly how ACtx involvement changes as a function of learning, as well as the functional role of distinct excitatory cell-types is unclear. Here, we addressed these questions by designing a two-choice auditory task in which water-restricted, head-fixed mice were trained to categorize the temporal rate of a sinusoidal amplitude modulated (sAM) noise burst and used transient cell-type specific optogenetics to probe ACtx necessity across the duration of learning. Our data demonstrate that ACtx is necessary for the ability to categorize the rate of sAM noise, and this necessity grows across learning. ACtx silencing substantially altered the behavioral strategies used to solve the task by introducing a fluctuating choice bias and increasing dependence on prior decisions. Furthermore, ACtx silencing did not impact the animal’s motor report, suggesting that ACtx is necessary for the conversion of sensation to action. Targeted inhibition of extratelencephalic projections on just 20% of trials had a minimal effect on task performance, but significantly degraded learning. Taken together, our data suggest that distinct cortical cell-types synergistically control auditory-guided behavior and that extratelencephalic neurons play a critical role in learning and plasticity.

Article activity feed