Dissecting reprogramming heterogeneity at single-cell resolution using scTF-seq

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Reprogramming approaches often produce heterogeneous cell fates and the mechanisms behind this heterogeneity are not well-understood. To address this gap, we developed scTF-seq, a technique inducing single-cell barcoded and doxycycline-inducible TF overexpression while quantifying TF dose-dependent transcriptomic changes. Applied to mouse embryonic multipotent stromal cells (MSCs), scTF-seq produced a gain-of-function atlas for 384 murine TFs. This atlas offers a valuable resource for gene regulation and reprogramming research, identifying key TFs governing MSC lineage differentiation, cell cycle control, and their interplay. Leveraging the single-cell resolution, we dissected reprogramming heterogeneity along dose and pseudotime. We thereby revealed TF dose-dependent and stochastic cell fate branching, unveiling gene expression signatures that enhance our understanding and prediction of reprogramming efficiency. scTF-seq also allowed us to classify TFs into four sensitivity classes based on dose response and determining features. Finally, in combinatorial scTF-seq, we observed that the same TF can exhibit both synergistic and antagonistic effects on another TF depending on its dose. In summary, scTF-seq provides a powerful tool for gaining mechanistic insights into how TFs determine cell states, while offering novel perspectives for cellular engineering strategies.

Article activity feed