Dysregulated SASS6 expression promotes increased ciliogenesis and cell invasion phenotypes

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Centriole and/or cilia defects are characteristic of cancer cells and have been linked to cancer cell invasion. However, the mechanistic basis of these effects is unknown. Spindle assembly abnormal protein 6 homolog (SAS-6) is essential for centriole biogenesis and cilia formation. In cycling cells, SAS-6 undergoes APC Cdh1 -mediated targeted degradation by the 26S proteasome at the end of mitosis. Little is known about the function of SAS-6 outside of centrosome biogenesis. To examine this, we expressed a non-degradable SAS-6 mutant (SAS-6ND). Expression of SAS-6ND led to an increase in ciliation and cilia-dependent cell invasion, and caused an upregulation of the YAP/TAZ pathway. YAP/TAZ or ciliogenesis inhibition prevented SAS-6-induced invasion. SAS-6ND caused increased actin alignment and stress fiber coherency, and nuclear flattening known to promote YAP nuclear import. Finally, data from The Cancer Genome Atlas showed that SAS-6 overexpression is associated with poor prognosis in various cancers. Our data provide evidence for a defined role of SAS-6 in cancer cell invasion and offers mechanistic insight into the role of YAP/TAZ in this cilia-sensitive process.

Synopsis

SAS-6 overexpressing cells show increased ciliation, actin cytoskeleton reorganization, cell flattening, YAP pathway activation and increased invasion

Article activity feed