Long-horizon associative learning explains human sensitivity to statistical and network structures in auditory sequences

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Networks are a useful mathematical tool for capturing the complexity of the world. In a previous behavioral study, we showed that human adults were sensitive to the high-level network structure underlying auditory sequences, even when presented with incomplete information. Their performance was best explained by a mathematical model compatible with associative learning principles, based on the integration of the transition probabilities between adjacent and non-adjacent elements with a memory decay. In the present study, we explored the neural correlates of this hypothesis via magnetoencephalography (MEG). Participants passively listened to sequences of tones organized in a sparse community network structure comprising two communities. An early difference (~150 ms) was observed in the brain responses to tone transitions with similar transition probability but occurring either within or between communities. This result implies a rapid and automatic encoding of the sequence structure. Using time-resolved decoding, we estimated the duration and overlap of the representation of each tone. The decoding performance exhibited exponential decay, resulting in a significant overlap between the representations of successive tones. Based on this extended decay profile, we estimated a long-horizon associative learning novelty index for each transition and found a correlation of this measure with the MEG signal. Overall, our study sheds light on the neural mechanisms underlying human sensitivity to network structures and highlights the potential role of Hebbian-like mechanisms in supporting learning at various temporal scales.

Article activity feed