An Alzheimer’s disease-associated common regulatory variant in a PTK2B intron alters microglial function

This article has been Reviewed by the following groups

Read the full article See related articles

Listed in

Log in to save this article

Abstract

Genome-wide association studies (GWAS) are revealing an ever-growing number of genetic associations with disease, but identifying and functionally validating the causal variants underlying these associations is very challenging and has only been done for a vanishingly small number of variants. Here we validate a single nucleotide polymorphism (SNP) associated with an increased risk of Alzheimer’s disease (AD) in an intronic enhancer of the PTK2B gene, by engineering it into human induced pluripotent stem cells (hiPSCs). Upon differentiation to macrophages and microglia, this variant shows effects on chromatin accessibility of the enhancer and increased binding of the transcription factor CEBPB but only subtle effects on PTK2B or CLU expression. Nevertheless, this variant also results in global changes to the transcriptome and phenotype of these cells. Expression of interferon gamma responsive genes including chemokine transcripts and their protein products are altered, and chemotaxis of the resulting microglial cells is affected. This variant thus causes disease-relevant transcriptomic and phenotypic changes, and we propose that it acts by altering microglia reactivity, consistent with the role of these cells in progression of AD.

Article activity feed

  1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

    Learn more at Review Commons


    Reply to the reviewers

    Response to Reviewers

    We thank the reviewers for their comments and suggestions, which we think are helpful and will improve the manuscript, and intend to address with the changes and planned revisions below.

    Reviewer #1 (Evidence, reproducibility and clarity (Required)):

    Bello et al look at the SNP rs28834970 associated with Alzheimer's disease (AD), with C being the risk allele, on chromatin accessibility and expression of a nearby gene, PTK2B, in microglia. Their contention is that the single SNP affects chromatin accessibility and binding of the transcription factor CEBP[beta] in an intronic region of PTK2B and thereby affects PTKB expression. I had a few questions that I think are critical to be addressed. Please note that my numbering of panels is based on the figures, not the legends, which do not seem to quite agree with each other. There are also some figure legends that say "IFNg" while the figures say "LPS", which should be fixed.

    We apologise for the mistake in the figure legend that made this confusing, which we have now revised.

    The abstract says that editing a line that is homozygous for protective alleles to homozygous for risk results in "subtle downregulation of PTK2B expression". It isn't clear to me that the presented data fully supports this contention, which is central to the argument of the paper. In figure 2e, the authors show in both RNAseq and ddPCR that there is numerically lower PTK2B expression but this is not indicated to be statistically significant by one-way paired ANOVA. If there is no nominally significant difference in the edited lines, compared to the proposed significant differences in lines carrying the full risk haplotype (figure 1), then it would not seem sensible to ascribe the effects to the single edited base pair.

    We agree with the reviewer that given the effect of the SNP on PTK2B expression in the edited lines is small and only significant in macrophages, we should not interpret the effects to be mediated solely through PTK2B expression, and have substantially reworded the manuscript accordingly.

    Whilst the effects in the eQTL analysis are significant, it is worth noting that this is likely due to the much larger number of donors (133-217) giving greater power to detect the subtle changes in expression (~1.1 to 2 fold in eQTL). This change is of a similar magnitude in our SNP edited lines (~1.2 fold in SNP edited lines) as would be expected of most common regulatory variants so we believe that it could be the primary causal variant. However, we cannot exclude that other variants in the haplotype could contribute to the effect, so have also reworded accordingly to make this clear.

    Given this uncertainty about the overall strength of effect of the single base pair change it would seem important to evaluate the proposed mechanism of CEBPb binding. It wasn't clear whether the ATAC-seq data summarized in the volcano plot in 2C is proposed to be a cause or a consequence of the CEBPb binding change. I am assuming that the 'fold change' estimate here is CC compared to TT, which would be consistent with direction of effect in figure 1, but please clarify.

    We apologise for the mistake in the figure legend that made this confusing, which we have now revised along with clarification in the revised text. It is difficult to be sure whether changes in chromatin accessibility are a cause or consequence of CEBPb binding, but the fact that the binding of CEBPb is increased in the CC allele (Fig 2a, Fig 2c), that the C allele better matches the consensus sequence (Fig 2b) and there is increased chromatin accessibility (Fig 2a, Supp Fig 3b) suggests that CEBPb binding is causing the formation of the region of chromatin accessibility.

    In contrast to the subtle effects at PTK2B, the global transcriptional effects in figure 3 look quite strong. Are any of these changes dependent on PTK2B, that is to say, are they mimicked by partial suppression of PTK2B expression or activity?

    We agree that the downstream effects of the SNP are much stronger than the effects on PTK2B expression, and we have substantially reworded the manuscript to make it clear that we are unsure that the effects of the SNP are all mediated via PTK2B.

    However, we note that there is evidence in the literature of a loss in CCL4 and CCL5 expression upon PTK2B knockout in macrophages (https://www.nature.com/articles/s41467-021-27038-5) and inhibition of PTK2B in monocytes results in a reduction in CCL5 and CXCL1 (https://www.nature.com/articles/s41598-019-44098-2) consistent with our observations.

    Experiments to manipulate PTK2B expression in microglia and readout changes at the RNA level would take a few months to complete, but we would be willing to do this if the reviewer felt this was necessary.

    Finally, in figure 4, it should be clarified as to why lower expression of PTK2B would be expected to have a detrimental effect on Alzheimer's risk. If understood correctly, and again fixing the figure legends would be helpful, the CC edited lines (risk) have lower chemokine induction than the unedited TT lines.

    We apologise for the error in this figure which we have corrected in the revised version. You are correct that the CC lines have a lower chemokine level in both unstimulated and stimulated cells, and we have now discussed further how this may be linked to increased disease risk.

    "Even though overexpression of these chemokines is characteristic of neuroinflammation, correlated with disease progression and found in late stages of AD, knockout of chemokines, such as CCL2, and chemokine receptors, such as CCR2 and CCR5, in mice is associated with increased Aβ deposition and accumulation [47,50-52,107]. It has also been found that patients carrying CCR5Δ32 mutation, which prevents CCR5 surface expression, develop AD at a younger age[108]. Therefore, we hypothesize that in individuals carrying the C/C allele of rs28834970 downregulation of these chemokines in macrophages and microglia harbouring the C/C allele of rs28834970 affects Aβ-induced microglia chemotaxis, leukocytes recruitment and clearance of Aβ, and may increase the risk of developing symptomatic AD"

    Reviewer #1 (Significance (Required)):

    Going from GWAS hits, which represent blocks of high LD inherited variants, to single functional variants is a difficult problem in human genetics. The current paper attempts to isolate the effect of a single variant within an LD block on IPSC derived macrophages and microglia. This idea might be useful in nominating PTK2B as a therapeutic target for AD, although there is some question in my mind as to direction of effect.

    Reviewer #2 (Evidence, reproducibility and clarity (Required)):

    SUMMARY: In this manuscript the authors explore the biological effects of an intronic SNP in the PTK2B gene, previously shown to be associated with late onset Alzheimer's disease (AD) risk. Based on the likely effect of the SNP locus on PTK2B expression in the macrophage lineage, the authors explore the consequences of introducing with the Crispr/Cas9 technique the biallelic SNP base change (C/C vs T/T) in a human IPSC line that is then differentiated into macrophages or microglia. They observe that C/C increases chromatin accessibility and CEBPb binding in comparison to T/T, with a slight decrease in PTK2B expression, significant in macrophages but not in microglia. The authors then investigate the transcriptome changes induced by the C/C mutation and find alteration in many genes, including a decreased expression of a number of cytokine or receptor proteins involved in inflammatory responses. The authors also mention a decreased effect on IFNg-induced reduced mobility but the data are missing (see Figure errors below). Overall the authors propose that the risk SNP is associated with a decreased PTK2B expression and hypothesize a link between this change and a decreased function of macrophages/microglia that may contribute to AD pathology.

    MAJOR COMMENTS

    1- The authors claim that their results show that the investigated SNP has a causal effects in "microglial function" (Title) and in Alzheimer's disease (AD) (Abstract 2nd sentence "Here we validate a causal single nucleotide polymorphism (SNP) associated with an increased risk of Alzheimer's disease". The word "causal" is repeated many times. However the authors should qualify their claim with respect to AD. Their results do show that the SNP has an effect on chromatin accessibility, CEBP binding, PTK2B expression and transcriptome, but the link between these changes is not formally demonstrated and their potential role in AD-like phenotype is not explored. The "causal" role is not formally and logically demonstrated. It remains an interesting, plausible hypothesis and the results provide strong arguments in support of that hypothesis but do not prove it, yet.

    Concerning the title, "causal effects on microglial function" is awkward, anything that has effects is logically "causal" in these effects. The title should be "... has effects on microglial functions" or "... alters microglial function".

    We agree with the reviewer that given the effect of the SNP on PTK2B expression in the edited lines is small and only significant in macrophages, we should not interpret the effects to be mediated solely through PTK2B expression, or that they cause AD. We have substantially reworded the manuscript throughout to account for this.

    2- One major difficulty in the results is to link the slight decrease in PTK2B transcript, which is only significant in macrophages, with the rest of the phenotype. Because what matters to make this link is not the mRNA but the protein, and because mRNA levels are often not strictly correlated with the protein levels, the authors should measure the PTK2B/PYK2 protein levels in their differentiated cell lines in basal conditions and following activation (as they do for other readouts) using immunoblotting. A robust and significant diminution in PYK2 protein would strongly support its role in linking PTK2B expression and transcriptome change.

    We have performed preliminary analyses of PTK2B expression by Western blot in these cell lines after differentiation, but were unable to observe a significant change in abundance in the edited cell lines. This is not unexpected given the results at the RNA level, since the effect size of this common regulatory variant is likely very small (estimated to be ~1.2 fold from the eQTL analysis), and likely within the variability of this assay.

    As mentioned above, we have reworded the manuscript to avoid interpreting that the effects of rs28834970 are mediated solely through effects on PTK2B expression. We think that an experiment to manipulate PTK2B levels (see next point) may be a better way to demonstrate whether these effects are mediated through PTK2B expression.

    An optional additional key experiment would be to reverse the transcriptome phenotype by increasing the expression of PTK2B (e.g. by cDNA transfection). Note that these points are important because an alternative hypothesis to explain the effects of C/C mutation on macrophage function would be that the C/C mutation has a long distance effect on other chromatin regions with key role in regulating these cells.

    We agree that this would be a valuable experiment, and are planning additional experiments to investigate the effect of manipulating PTK2B levels (through knockout) on microglia.

    3- The manuscript contains several errors in the figures and figure legends. In Fig. 2 the legends for the figure items are shuffled. Figure 4 and Supplementary Figure 5 are duplicates of the same one. Consequently important data are not presented.

    We apologise for the errors in these figures that were due to a mistake during uploading where the incorrect versions were used. The legends for figure 2 and panels in figure 4 have now been corrected, and show the effects of rs28834970 on microglial migration and chemokine release in the presence or absence of IFNg.

    4- When the number of replicates is small (e.g. n = 3) it is preferable to use non parametric tests (rank analysis, e.g. Mann Whitney's test) rather than t test. This applies to Figures 2D (current legend 2A), 2E (current legend 2B), Figure 4A-C, Supplementary Figures 2A, 2B. In Supplementary Fig 4E (MARCO) the number of replicates (presumably 3 because based on RNAseq) and the used test are not indicated. Is it the RNAseq statistical analysis?

    We thank the reviewer for this comment. We acknowledge that the t-test may lead to inflated false discovery rates. However, it has been shown that for small sample sizes parametric tests have a power advantage compared to non-parametric ones that may outweigh the possibly exaggerated false positives. See https://genomebiology.biomedcentral.com/articles/10.1186/s13059-022-02648-4#Sec3 which states:

    "In conclusion, when the per-condition sample size is less than 8, parametric methods may be used because their power advantage may outweigh their possibly exaggerated false positives."

    We have also modified the legend of supplementary figure 4E to clarify the number of replicates used.

    5- In addition to the above comment on tests, when the number of replicates is small it is not appropriate (and misleading) to show box plots or bars with SEM. In the indicated figures the individual data points should be shown.

    We now show individual replicates on box plots (Figure 2D, 2E and supp figure 4E).

    MINOR COMMENTS:

    a- Macrophages and microglia are very similar cell types. Could the authors comment more on the differences they observe and how they are related to those previously described?

    We have now referenced the original papers and commented on the markers that we see differentially expressed, notably P2RY12 which is a key homeostatic microglia marker that distinguishes these cells from macrophages.

    b- In Fig. 2A CEBPb cut and run plot, the differences are not limited to the SNP immediate vicinity, there are also visible differences between T/T and C/C plots in at least a 40-kb range. Is it due to multiple interactions of CEBPb? How can the point difference have broad consequences? Please explain this potentially interesting and relevant finding.

    Whilst there may be small changes in CEBPb binding at the second intronic PTK2B chromatin peak, this is not statistically significant given the variability between repeats. In fact, the only significant change we see in CEBPb binding genome-wide is at the locus overlapping the SNP (Fig 2c).

    c- Potentially cis-altered genes near the SNP include CHRNA2 and EPHX2 (see Sup. Fig. 3a). Their expression may not be detected in macrophage lineage. If this is the case please indicate in the text, otherwise please include the corresponding data in Sup. Fig. 3b to show the presence or absence of SNP-induced change.

    You are correct that CHRNA2 and EPHX2 are not expressed in our macrophages or microglia, and we have now explicitly stated this in the revised text.

    d- In general the Figures are not of very high quality and are difficult to read or understand without constantly going back and forth to the legends (which are mislabeled in some instances). To improve:

    . Please increase font size whenever possible.

    . Please improve Fig. 1d by indicating the position of the SNP, numbering the exons (an intermediate scale plot may be necessary and lines on bottom trace are hardly visible).

    . Please indicate the correct color code for T/T and C/C in Fig 3a and b, left panels, which currently doesn't match.

    . Please label the Venn's diagrams comparisons in Sup. Fig. 4b.

    . In the text and legends the Figure items are identified with letters in upper case, in the figures they are in lower case. Please be consistent.

    We have improved the resolution of the images in the pdf and Fig 1d has been revised to include the position of the SNP. The colour code for T/T and C/C is correct in fig 3a and 3b, but since the PCA plots are independently created, we would not always expect the position of the T/T and C/C alleles to be the same. The Venn diagrams in Sup Fig 4b have been updated, and the letters for the figure panels made consistently upper case throughout.

    e- In Fig. 2D and 2E, the Y axes should start at zero to avoid artificially increasing the visual differences. If there is a strong reason not to do so (I don't see any here), the Y axis should be clearly interrupted to avoid confusion.

    We have altered this accordingly.

    f- In the introduction the authors provide some background about previous work about the potential role of PTK2B/PYK2 in AD pathophysiology. The cited preclinical results suggest that PTK2B activity could have a deleterious effect (references in the manuscript). In contrast, some other reports (PMID: 29803828, 33718872) suggest a protective effect of PTK2B/PYK2. Because the evidence in the current manuscript suggests that the risk-associated SNP results in a decreased function of PTK2B/PYK2 (through decreased levels), at least in cells of the macrophage lineage, the authors could broaden their discussion to include these results.

    We have now discussed the conflicting evidence in the revised manuscript.

    Reviewer #2 (Significance (Required)):

    ADVANCE: Late onset Alzheimer's disease is a major medical issue. It has a complex genetic risk component with many associated loci identified in GWAS. Most of these have only a small individual impact on the risk. One of the SNPs associated with increased risk (rs28834970) is located in an intron of the PTK2B gene. Although various reports have investigated the role of the PTK2B gene product, the tyrosine kinase PYK2, in several AD models, the possible link with rs28834970, is unclear.

    An important point is to determine whether TàC SNP corresponding to rs28834970 alters PTK2B expression and how it does so. An alternative hypothesis could be that the SNP has a strong linkage disequilibrium with an unidentified allele in human populations that could be responsible for AD risk. The current manuscript is a significant step forward in addressing that question. By generating a biallelic C/C SNP mutation in a human IPSC line the current study allows to eliminate such linked contribution.

    The strength of the manuscript is to show an effect on chromatin accessibility, CEBP binding and possibly PTK2B transcripts. It also provides interesting evidence of a broad effect of the C/C mutation on the transcriptome of macrophage lineage cells. In its current form the manuscript presents weaknesses that could be improved. These flaws include issues with the presentation discussed above and the uncomplete demonstration that it is the decrease in PTK2B expression that causes the macrophage/microglia phenotype. If these flaws were overcome the paper would represent a significant advance.

    AUDIENCE: The expected audience is specialized in AD with a possible broader range if all weaknesses are addressed.

    REVIEWER EXPERTISE: Basic science close to the field.

  2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Referee #2

    Evidence, reproducibility and clarity

    Summary: In this manuscript the authors explore the biological effects of an intronic SNP in the PTK2B gene, previously shown to be associated with late onset Alzheimer's disease (AD) risk. Based on the likely effect of the SNP locus on PTK2B expression in the macrophage lineage, the authors explore the consequences of introducing with the Crispr/CAS9 technique the biallelic SNP base change (C/C vs T/T) in a human IPSC line that is then differentiated into macrophages or microglia. They observe that C/C increases chromatin accessibility and CEBPb binding in comparison to T/T, with a slight decrease in PTK2B expression, significant in macrophages but not in microglia. The authors then investigate the transcriptome changes induced by the C/C mutation and find alteration in many genes, including a decreased expression of a number of cytokine or receptor proteins involved in inflammatory responses. The authors also mention a decreased effect on IFNg-induced reduced mobility but the data are missing (see Figure errors below). Overall the authors propose that the risk SNP is associated with a decreased PTK2B expression and hypothesize a link between this change and a decreased function of macrophages/microglia that may contribute to AD pathology.

    Major comments:

    1. The authors claim that their results show that the investigated SNP has a causal effects in "microglial function" (Title) and in Alzheimer's disease (AD) (Abstract 2nd sentence "Here we validate a causal single nucleotide polymorphism (SNP) associated with an increased risk of Alzheimer's disease". The word "causal" is repeated many times. However the authors should qualify their claim with respect to AD. Their results do show that the SNP has an effect on chromatin accessibility, CEBP binding, PTK2B expression and transcriptome, but the link between these changes is not formally demonstrated and their potential role in AD-like phenotype is not explored. The "causal" role is not formally and logically demonstrated. It remains an interesting, plausible hypothesis and the results provide strong arguments in support of that hypothesis but do not prove it, yet. Concerning the title, "causal effects on microglial function" is awkward, anything that has effects is logically "causal" in these effects. The title should be "... has effects on microglial functions" or "... alters microglial function".
    2. One major difficulty in the results is to link the slight decrease in PTK2B transcript, which is only significant in macrophages, with the rest of the phenotype. Because what matters to make this link is not the mRNA but the protein, and because mRNA levels are often not strictly correlated with the protein levels, the authors should measure the PTK2B/PYK2 protein levels in their differentiated cell lines in basal conditions and following activation (as they do for other readouts) using immunoblotting. A robust and significant diminution in PYK2 protein would strongly support its role in linking PTK2B expression and transcriptome change. An optional additional key experiment would be to reverse the transcriptome phenotype by increasing the expression of PTK2B (e.g. by cDNA transfection). Note that these points are important because an alternative hypothesis to explain the effects of C/C mutation on macrophage function would be that the C/C mutation has a long distance effect on other chromatin regions with key role in regulating these cells.
    3. The manuscript contains several errors in the figures and figure legends. In Fig. 2 the legends for the figure items are shuffled. Figure 4 and Supplementary Figure 5 are duplicates of the same one. Consequently important data are not presented.
    4. When the number of replicates is small (e.g. n = 3) it is preferable to use non parametric tests (rank analysis, e.g. Mann Whitney's test) rather than t test. This applies to Figures 2D (current legend 2A), 2E (current legend 2B), Figure 4A-C, Supplementary Figures 2A, 2B. In Supplementary Fig 4E (MARCO) the number of replicates (presumably 3 because based on RNAseq) and the used test are not indicated. Is it the RNAseq statistical analysis?
    5. In addition to the above comment on tests, when the number of replicates is small it is not appropriate (and misleading) to show box plots or bars with SEM. In the indicated figures the individual data points should be shown.

    Minor comments:

    • a. Macrophages and microglia are very similar cell types. Could the authors comment more on the differences they observe and how they are related to those previously described?
    • b. In Fig. 2A CEBPb cut and run plot, the differences are not limited to the SNP immediate vicinity, there are also visible differences between T/T and C/C plots in at least a 40-kb range. Is it due to multiple interactions of CEBPb? How can the point difference have broad consequences? Please explain this potentially interesting and relevant finding.
    • c. Potentially cis-altered genes near the SNP include CHRNA2 and EPHX2 (see Sup. Fig. 3a). Their expression may not be detected in macrophage lineage. If this is the case please indicate in the text, otherwise please include the corresponding data in Sup. Fig. 3b to show the presence or absence of SNP-induced change.
    • d. In general the Figures are not of very high quality and are difficult to read or understand without constantly going back and forth to the legends (which are mislabeled in some instances). To improve:
      • Please increase font size whenever possible.
      • Please improve Fig. 1d by indicating the position of the SNP, numbering the exons (an intermediate scale plot may be necessary and lines on bottom trace are hardly visible).
      • Please indicate the correct color code for T/T and C/C in Fig 3a and b, left panels, which currently doesn't match.
      • Please label the Venn's diagrams comparisons in Sup. Fig. 4b.
      • In the text and legends the Figure items are identified with letters in upper case, in the figures they are in lower case. Please be consistent.
    • e. In Fig. 2D and 2E, the Y axes should start at zero to avoid artificially increasing the visual differences. If there is a strong reason not to do so (I don't see any here), the Y axis should be clearly interrupted to avoid confusion.
    • f. In the introduction the authors provide some background about previous work about the potential role of PTK2B/PYK2 in AD pathophysiology. The cited preclinical results suggest that PTK2B activity could have a deleterious effect (references in the manuscript). In contrast, some other reports (PMID: 29803828, 33718872) suggest a protective effect of PTK2B/PYK2. Because the evidence in the current manuscript suggests that the risk-associated SNP results in a decreased function of PTK2B/PYK2 (through decreased levels), at least in cells of the macrophage lineage, the authors could broaden their discussion to include these results.

    Significance

    Advance: Late onset Alzheimer's disease is a major medical issue. It has a complex genetic risk component with many associated loci identified in GWAS. Most of these have only a small individual impact on the risk. One of the SNPs associated with increased risk (rs28834970) is located in an intron of the PTK2B gene. Although various reports have investigated the role of the PTK2B gene product, the tyrosine kinase PYK2, in several AD models, the possible link with rs28834970, is unclear.

    An important point is to determine whether TC SNP corresponding to rs28834970 alters PTK2B expression and how it does so. An alternative hypothesis could be that the SNP has a strong linkage disequilibrium with an unidentified allele in human populations that could be responsible for AD risk. The current manuscript is a significant step forward in addressing that question. By generating a biallelic C/C SNP mutation in a human IPSC line the current study allows to eliminate such linked contribution.

    The strength of the manuscript is to show an effect on chromatin accessibility, CEBP binding and possibly PTK2B transcripts. It also provides interesting evidence of a broad effect of the C/C mutation on the transcriptome of macrophage lineage cells. In its current form the manuscript presents weaknesses that could be improved. These flaws include issues with the presentation discussed above and the uncomplete demonstration that it is the decrease in PTK2B expression that causes the macrophage/microglia phenotype. If these flaws were overcome the paper would represent a significant advance.

    Audience: The expected audience is specialized in AD with a possible broader range if all weaknesses are addressed.

    Reviewer Expertise: Basic science close to the field.

  3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Referee #1

    Evidence, reproducibility and clarity

    Bello et al look at the SNP rs28834970 associated with Alzheimer's disease (AD), with C being the risk allele, on chromatin accessibility and expression of a nearby gene, PTK2B, in microglia. Their contention is that the single SNP affects chromatin accessibility and binding of the transcription factor CEBP[beta] in an intronic region of PTK2B and thereby affects PTKB expression. I had a few questions that I think are critical to be addressed. Please note that my numbering of panels is based on the figures, not the legends, which do not seem to quite agree with each other. There are also some figure legends that say "IFNg" while the figures say "LPS", which should be fixed.

    The abstract says that editing a line that is homozygous for protective alleles to homozygous for risk results in "subtle downregulation of PTK2B expression". It isn't clear to me that the presented data fully supports this contention, which is central to the argument of the paper. In figure 2e, the authors show in both RNAseq and ddPCR that there is numerically lower PTK2B expression but this is not indicated to be statistically significant by one-way paired ANOVA. If there is no nominally significant difference in the edited lines, compared to the proposed significant differences in lines carrying the full risk haplotype (figure 1), then it would not seem sensible to ascribe the effects to the single edited base pair.

    Given this uncertainty about the overall strength of effect of the single base pair change it would seem important to evaluate the proposed mechanism of CEBPb binding. It wasn't clear whether the ATAC-seq data summarized in the volcano plot in 2C is proposed to be a cause or a consequence of the CEBPb binding change. I am assuming that the 'fold change' estimate here is CC compared to TT, which would be consistent with direction of effect in figure 1, but please clarify.

    In contrast to the subtle effects at PTK2B, the global transcriptional effects in figure 3 look quite strong. Are any of these changes dependent on PTK2B, that is to say, are they mimicked by partial suppression of PTK2B expression or activity?

    Finally, in figure 4, it should be clarified as to why lower expression of PTK2B would be expected to have a detrimental effect on Alzheimer's risk. If understood correctly, and again fixing the figure legends would be helpful, the CC edited lines (risk) have lower chemokine induction than the unedited TT lines.

    Significance

    Going from GWAS hits, which represent blocks of high LD inherited variants, to single functional variants is a difficult problem in human genetics. The current paper attempts to isolate the effect of a single variant within an LD block on IPSC derived macrophages and microglia. This idea might be useful in nominating PTK2B as a therapeutic target for AD, although there is some question in my mind as to direction of effect.