The SARS-CoV-2 nucleoprotein associates with anionic lipid membranes

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a lipid-enveloped virus that acquires its lipid bilayer from the host cell it infects. SARS-CoV-2 can spread from cell to cell or from patient to patient by undergoing assembly and budding to form new virions. The assembly and budding of SARS-CoV-2 is mediated by several structural proteins known as envelope (E), membrane (M), nucleoprotein (N) and spike (S), which can form virus-like particles (VLPs) when co-expressed in mammalian cells. Assembly and budding of SARS-CoV-2 from the host ER-Golgi intermediate compartment is a critical step in the virus acquiring its lipid bilayer. To date, little information is available on how SARS-CoV-2 assembles and forms new viral particles from host membranes. In this study, we find the N protein can strongly associate with anionic lipids including phosphoinositides and phosphatidylserine. Moreover, lipid binding is shown to occur in the N protein C-terminal domain, which is supported by extensive in silico analysis. Anionic lipid binding occurs for both the free and N oligomeric forms suggesting N can associate with membranes in the nucleocapsid form. Herein we present a lipid-dependent model based on in vitro , cellular and in silico data for the recruitment of N to M assembly sites in the lifecycle of SARS-CoV-2.

Article activity feed