Leucine zipper-based sorting system enables generation of multi-functional CAR T cells

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Resistance to chimeric antigen receptor (CAR) T cell therapy develops through multiple mechanisms including antigen-loss escape and tumor-induced immune suppression. Expression of multiple CARs may overcome multi-antigen-loss escape. Similarly, expression of switch receptors that convert inhibitory immune checkpoint signals into positive costimulatory signals may enhance CAR T cell activity in the tumor microenvironment. Engineering multiple features into one cell product, however, is limited by transgene packaging constraints of current vector systems. Here, we describe a leucine zipper-based cell sorting methodology that enables selective single-step immunomagnetic purification of cells co-transduced with two vectors, designed to potentially double the number of incorporated transgenes. This “Zip-sorting” system facilitated generation of T cells simultaneously expressing up to four CARs and co-expressing up to three switch receptors. These multi-CAR multi-Switch receptor arrays enabled T cells to eliminate antigenically heterogeneous syngeneic leukemia populations co-expressing multiple inhibitory ligands. Zip-sorted multi-CAR multi-Switch receptor T cells represent a potent therapeutic strategy to overcome multiple mechanisms of CAR T cell resistance.

Article activity feed