Autophagy adaptors mediate Parkin-dependent mitophagy by forming sheet-like liquid condensates

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

During PINK1- and Parkin-mediated mitophagy, autophagy adaptors are recruited to damaged mitochondria to promote their selective degradation. Autophagy adaptors such as optineurin (OPTN) and NDP52 facilitate mitophagy by recruiting the autophagy-initiation machinery, and assisting engulfment of damaged mitochondria through binding to ubiquitinated mitochondrial proteins and autophagosomal ATG8 family proteins. Here, we demonstrate that OPTN and NDP52 form sheet-like phase-separated condensates with liquid-like properties on the surface of ubiquitinated mitochondria. The dynamic and liquid-like nature of OPTN condensates is important for mitophagy activity, because reducing the fluidity of OPTN-ubiquitin condensates suppresses the recruitment of ATG9 vesicles and impairs mitophagy. Based on these results, we propose a dynamic liquid-like, rather than a stoichiometric, model of autophagy adaptors to explain the interactions between autophagic membranes (i.e., ATG9 vesicles and isolation membranes) and mitochondrial membranes during Parkin-mediated mitophagy. This model underscores the importance of liquid-liquid phase separation in facilitating membrane-membrane contacts, likely through the generation of capillary forces.

Article activity feed