Extracellular filaments revealed by affinity capture cryo-electron tomography

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Cryogenic-electron tomography (cryo-ET) has provided an unprecedented glimpse into the nanoscale architecture of cells by combining cryogenic preservation of biological structures with electron tomography. Micropatterning of extracellular matrix proteins is increasingly used as a method to prepare adherent cell types for cryo-ET as it promotes optimal positioning of cells and subcellular regions of interest for vitrification, cryo-focused ion beam (cryo-FIB) milling, and data acquisition. Here we demonstrate a micropatterning workflow for capturing minimally adherent cell types, human T-cells and Jurkat cells, for cryo-FIB and cryo-ET. Our affinity capture system facilitated the nanoscale imaging of Jurkat cells, revealing extracellular filamentous structures. It improved workflow efficiency by consistently producing grids with a sufficient number of well positioned cells for an entire cryo-FIB session. Affinity capture can be extended to facilitate high resolution imaging of other adherent and non-adherent cell types with cryo-ET.

Article activity feed