Hypoxia-sensing by the Histone Demethylase UTX ( KDM6A ) Controls Colitogenic CD4 + T cell Fate and Mucosal Inflammation

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Hypoxia is a feature of inflammatory conditions [e.g., inflammatory bowel disease (IBD)] and can exacerbate tissue damage in these diseases. To counteract hypoxia’s deleterious effects, adaptive responses have evolved which protect against hypoxia-associated tissue injury. To date, much attention has focused on hypoxia-activated HIF (hypoxia-inducible factor) transcription factors in these responses. However, recent work has identified epigenetic regulators that are also oxygen-sensitive, but their role in adaptation to hypoxic inflammation is currently unclear. Here, we show that the oxygen-sensing epigenetic regulator UTX is a critical modulator of colitis severity. Unlike HIF transcription factors that act on gut epithelial cells, UTX functions in colitis through its effects on immune cells. Hypoxia results in decreased CD4 + T cell IFN-γ production and increased CD4 + regulatory T cells, and these findings are recapitulated by T cell-specific UTX deficiency. Hypoxia impairs the histone demethylase activity of UTX, and loss of UTX function leads to accumulation of repressive H3K27me3 epigenetic marks at IL12/STAT4 pathway genes ( Il12rb2, Tbx21, and Ifng ). In a colitis mouse model, T cell-specific UTX deletion ameliorates colonic inflammation, protects against weight loss, and increases survival. Together these findings implicate UTX’s oxygen-sensitive histone demethylase activity in mediating protective, hypoxia-induced pathways in colitis.

Article activity feed