An active neural mechanism for relational learning and fast knowledge reassembly
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
How do we gain general insights from limited novel experiences? Humans and animals have a striking ability to learn relationships between experienced items, enabling efficient generalization and rapid assimilation of new information. One fundamental instance of such relational learning is transitive inference (learn A>B and B>C , infer A>C ), which can be quickly and globally reorganized upon learning a new item (learn A>B>C and D>E>F , then C>D , and infer B>E ). Despite considerable study, neural mechanisms of transitive inference and fast reassembly of existing knowledge remain elusive. Here we adopt a meta-learning (“learning-to-learn”) approach. We train artificial neural networks, endowed with synaptic plasticity and neuromodulation, to be able to learn novel orderings of arbitrary stimuli from repeated presentation of stimulus pairs. We then obtain a complete mechanistic understanding of this discovered neural learning algorithm. Remarkably, this learning involves active cognition: items from previous trials are selectively reinstated in working memory, enabling delayed, self-generated learning and knowledge reassembly. These findings identify a new mechanism for relational learning and insight, suggest new interpretations of neural activity in cognitive tasks, and highlight a novel approach to discovering neural mechanisms capable of supporting cognitive behaviors.