Cross-species analysis of ARPP19 phosphorylation during oocyte meiotic maturation charts the emergence of a new cAMP-dependent role in vertebrates

This article has been Reviewed by the following groups

Read the full article

Listed in

Log in to save this article

Abstract

In many animal species, elevated cAMP-PKA signaling initiates oocyte meiotic maturation upon hormonal stimulation, whereas in vertebrates, it acts as a negative regulator of this process. To address this “cAMP paradox”, we have focused on ARPP19 proteins. Dephosphorylation of Xenopus ARPP19 on a specific PKA site has been identified as a key step in initiating oocyte maturation. We first tracked evolution of the ARPP19 PKA phosphorylation site, revealing that it appeared early during the emergence of metazoans. This contrasts with strong conservation across eukaryotes of a phosphorylation site for the kinase Gwl in ARPP19 proteins, able to transform them into potent PP2A-B55 inhibitors and thus promote M-phase entry. We then compared the phosphorylation and function of Xenopus ARPP19 with its orthologue from the jellyfish Clytia , a model species showing cAMP-induced oocyte maturation. We confirmed that Clytia ARPP19 is phosphorylated on the conserved Gwl site in vitro as well as in maturing Xenopus and Clytia oocytes, behaving as a PP2A inhibitor and contributing to Cdk1 activation. However, Gwl-phosphorylated ARPP19 was unable to initiate oocyte maturation in Clytia , suggesting the presence of additional locks released by hormonal stimulation. Clytia ARPP19 was in vitro phosphorylated by PKA uniquely on the predicted site, but it was a much poorer substrate of PKA and of its antagonizing phosphatase, PP2A-B55δ, than the Xenopus protein. Correspondingly, PKA-phosphomimetic Clytia ARPP19 had a much weaker inhibitory activity on meiosis resumption in Xenopus oocytes than its Xenopus counterpart. Hence, poor recognition of Clytia ARPP19 by PKA and the absence of its targets in Clytia oocytes account for the cAMP paradox. This cross-species study of ARPP19 illustrates how initiation of oocyte maturation has complexified during animal evolution, and provides further insight into its biochemical regulation.

Article activity feed

  1. Note: This response was posted by the corresponding author to Review Commons. The content has not been altered except for formatting.

    Learn more at Review Commons


    Reply to the reviewers

    1. General Statements [optional]

    We thank the reviewers for their appreciation of the interest, novelty and quality of our study, and their useful feedback to improve its presentation.

    We have revised the manuscript addressing all the points they made, as detailed below, section by section, following the organization in the reviews. The corresponding changes are highlighted in yellow (new text) or crossed out (deleted text) in our revised manuscript.

    In case it is useful for the editor to check how each individual point was addressed, we also have extracted from the reviews each individual reviewer’s comment and our direct response, listed as bullet points at the end of this text.

    2. Point-by-point description of the revisions

    I - General criticisms

    __Reviewer #1: __My main criticism is unfortunately inherent to the approach: comparative studies are absolutely critical, but they can only provide a very sparse sampling of diversity. Fortunately, thanks to high-throughput sequencing, bioinformatic analyses can now be performed on a large number of species, but experimental validation is typically restricted to two or three species. The consequence of this for the present manuscript is that while the functional conservation of the Gwl site is convincingly shown, the exact mechanisms responsible for the reduced effect of PKA phosphorylation remain relatively vaguely defined. Indeed, in their Discussion the authors list a number of experimental approaches to address this - but I understand that these would all involve substantial efforts to address. In particular, testing chimeric constructs around the consensus PKA site and from multiple species could be very informative.

    We completely agree with the reviewer that comparative approaches are critical to understanding biological mechanisms, and are excited by the increasing possibilities to perform not only sequence and descriptive comparisons but functional studies across a range of emerging model organisms. We hope that more and more researchers in cell and molecular biology will profit from experimental tools and techniques now available in such species, and to pioneer new ones. Of course, and he/she rightly points out, conclusions are currently limited by the number of species studied, but comparisons between two judiciously chosen species can already be very informative. Thus, in our study, the use of Xenopus and Clytia allowed us to make significant progress towards our main objective of understanding the cAMP-PKA paradox in the control of oocyte maturation; specifically by showing both that PKA phosphorylation of Clytia ARPP19 is lower in efficiency and that the phosphorylated protein has a lower effect on oocyte maturation than the Xenopus protein. As the reviewer points out, unravelling the exact mechanisms underlying these differences will require a large amount of additional work and is beyond the scope of the current study. Actually, we have embarked on several series of experiments to this end using some of the approaches listed in the Discussion. Specifically, we are testing the biochemical and functional properties of chimeric constructs containing the consensus PKA site from various species. This is a substantial undertaking which will require one to two years to complete, but is already giving some very interesting findings.

    __Reviewer #1: __The figures and text could be slightly condensed down to about 6 figures.

    We have reduced the number of figure panels but we prefer to maintain the number of figures, because the experimental data presented in them is essential to the interpretation of our results and the overall conclusions of the article. If the journal editor would like us to reduce the number of figures, we could do this by displacing Figure 4 and some panels of other figures (to then fuse some of them) to supplementary material, but this would be a pity.

    ________________________________________________________________________________II - Abstract__

    As recommended by Reviewer #2, we have reworked the Abstract to make it more accessible to new readers, attempting to bring out more clearly and simply the main results and conclusions of the study. We correspondingly simplified and shortened the title of the article. Changes: Page 2.

    ____________________________________________________________________________________III- Introduction points__

    Reviewer #2: I believe that it would be interesting to include some time-references when introducing the prophase arrest of Clytia and Xenopus oocytes. How long is prophase arrest in Xenopus compared to Clytia or other organisms? How can this affect the prophase arrest mechanisms? It seems that the prophase arrest in Xenopus oocytes is found to be significantly more prolonged compared to Clytia and various other organisms, and also meiotic maturation proceeds much more rapidly in Clytia than in Xenopus. This should be indicated in the introduction with a short introduction of why, and not others, were these species chosen for this study.

    Differences in timing of oocyte prophase arrest and in maturation kinetics across animals are indeed highly relevant in relation to the underlying biochemical mechanisms. Unfortunately, not enough information is currently available concerning the duration of the successive phases of oocyte prophase arrest across species to make any meaningful correlations with PKA regulation of maturation initiation. We have nevertheless expanded the Introduction to cover this issue as follows:

    • We start the introduction by mentioning how the length of the prophase arrest varies across species. __Changes: Page 3, lines 5-11. __
    • We have added examples of species which likely have similar durations of prophase arrest but show cAMP-stimulated vs cAMP-inhibited release. Changes:____ Page 4, lines 28-35.
    • We have specified the temporal differences in meiotic maturation in Xenopus (3-7 hrs) and Clytia (10-15 min). Changes: Page 5, lines 32-33. Reviewer #2: why, and not others, were these species [Xenopus, Clytia] chosen for this study. A brief justification is included in lines 1-page 5 "..a laboratory model hydrozoan species well suited to oogenesis studies", but it does not explain why this and not other hydrozoan species like Hydra, that has also been used for meiosis studies.

    As requested by Reviewer #2, fuller details are now included about the advantages of Clytia compared to other hydrozoan species, citing several articles and recent reviews here and also in the Discussion. Changes: Page 5, lines 21-32 & 37-39.

    Hydra is a classic cnidarian experimental species and has proved an extremely useful model for regeneration and body patterning, but is not suitable for experimental studies on oocyte maturation because spawning is hard to control and fully-grown oocytes cannot easily be obtained, manipulated or observed. In contrast many hydromedusae (including Clytia, Cytaeis, and Cladonema) have daily dark/light induced spawning and accessible gonads, so provide great material for studying oogenesis and maturation. Of these, Clytia has currently by far the most advanced molecular and experimental tools.

    Reviewer #2: The proteins MAPK is not introduced properly, as it is first mentioned in the results section in line 12. Given the importance of the results provided with it, it should be presented in the introduction prior to the results section.

    As requested by Reviewer #2, the involvement of MAPK activation during Xenopus oocyte meiotic maturation is now introduced, explaining how its phosphorylation serves as a marker of Cdk1 activation. Changes: Page 5, lines 1-5.

    Reviewer #2: *These sentences need a more elaborate explanation: Page 4 Lines 16-17 "... no role for cAMP has been detected in meiotic resumption, which is mediated by distinct signaling pathways" Which pathways? *

    We now give the example of the well-characterized pathway Gbg-PI3K pathway for oocyte maturation initiation in the starfish. Changes: Page 4, lines 1-15.

    __Reviewer #2: __Page 4 line 34-39. Introduction indicates that the phosphorylation of ARPP19 on S67 by Gwl is a poorly understood molecular signaling cascade (line 34). However, the positive role of ARPP19 on Cdk1 activation, through the S67 phosphorylation by Gwl, appears to be widespread across all eukaryotic mitotic and meiotic divisions studied (lines 36-37). These two sentences seem a little contradictory. If the general pathway has been identified but the signaling cascade is still not well described, please indicate that in a clearer way.

    We apologise that the wording we used was not clear and implied that the mechanisms of PP2A inhibition by Gwl-phosphorylated ARPP19 were poorly understood. On the contrary, they are very well studied. The part that remains mysterious concerns the upstream mechanisms. We have reworded the paragraph to make this point unambiguous. Changes: Page 5, lines 1-8.

    ________________________________________________________________________________IV - Results__

    __Reviewer #2: __The text of the results is generally well described; however, all the sections start with a long introductory paragraph. I believe this facilitates the contextualization of the experiments, but please try to summarize when possible. For example, in page 5 lines 12-25, or page 7 lines 30-37, are all introduction information.

    As requested by Reviewer #2, we have shortened or removed the introductory passages of the Results section paragraphs, which were redundant with the information given in the introduction. We did not restrict to the two examples cited by the reviewer, but have shortened all the Results passages that repeat information already provided in the Introduction. Changes: Page 7, lines 3-4 & 14-16 & 36-37 - Page 8, lines 12-15 - Page 8, lines 37-40 & Page 9, lines 1-6.

    Reviewer #2: Page 7, Lines 14-19 present a general conclusion of the findings explained in lines 20-27. I think these results are important and they should be explained better, in my opinion they are slightly poorly described.

    We have followed the reviewer's recommendation. The explanation of the experiments and the results are more detailed and the paragraph ends with a general conclusion which came too early in the previous version. Changes: Page 8, lines 22-24 & 32-34.

    Reviewer #2: Page 8, lines 16-17: "It was not possible to increase injection volumes or protein concentrations without inducing high levels of non-specific toxicity". What are the non-specific toxicity effects? How was this addressed? What fundaments this conclusion?

    Clytia oocytes are relatively fragile. Sensitivity of oocytes to injection varies between batches, while in general increasing injection volumes or protein concentrations increases the levels of lysis observed. We do not know exactly what causes this but lysis can happen either immediately following injection or during the natural exaggerated cortical contraction waves that accompany meiotic maturation, suggesting that it relates to mechanical trauma. We have expanded this paragraph and the legend of Fig. 3C to explain these injection experiments more fully in the text and to clarify these issues. Changes: Page 9, lines 16-29 - Page 32, lines 34-41 & Page 33, lines 1-11 - Supplementary Table 1.

    Same paragraph: Lines 25-27 of page 8. Text reads, "These results suggest that PP2A inhibition is not sufficient to induce oocyte maturation in Clytia, although we cannot rule out that the quantity of OA or Gwl thiophosphorylated ARPP proteins delivered was insufficient to trigger GVBD.". Please provide evidence if higher concentrations of OA or Gwl were tested to state this conclusion.

    As explained above, we could not increase the concentrations of ARPP19 protein beyond 4mg/ml. It is important to note that at the same concentration, both Clytia and Xenopus proteins induce activation of Cdk1 and GVBD in the Xenopus oocyte.

    Concerning OA, it is well documented in many systems including Xenopus, starfish and mouse oocytes as well as mammalian cell cultures, that high concentrations lead to cell lysis/apoptosis as a result of a massive deregulation of protein phosphorylation (Goris et al, 1989; Rime & Ozon, 1990; Alexandre et al, 1991; Boe et al, 1991; Gehringer, 2004; Maton el al, 2005; Kleppe et al, 2015). Specific tests in Xenopus oocytes, have shown that injecting 50 nl of 1 or 2 mM OA specifically inhibits PP2A, while injecting 5 mM also targets PP1 and higher OA concentrations inhibit all phosphatases. For these reasons, we did not increase OA concentrations over 2 mM. When injected in Xenopus oocyte at 1 or 2 mM, OA induces Cdk1 activation, GVBD but then the cell dies because PP2A has multiple substrates essential for cell life. When injected at 2 mM in Clytia oocytes, OA does not induce Cdk1 activation nor GVBD but promotes cell lysis. This supports the conclusion that 2 mM OA is sufficient to inhibit PP2A (and possibly other phosphatases) but that PP2A inhibition is not sufficient to induce oocyte maturation in Clytia.

    We have reworded the relevant text to make these points clearer. The previous statement that “*we cannot rule out that the quantity of OA or Gwl thiophosphorylated ARPP proteins delivered was insufficient to trigger GVBD” has been removed because it was unnecessarily cautious in the context of the literature cited above, as now fully explained. *Changes: Page 9, lines 31-35 - Page 32, lines 34-41 & Page 33, lines 1-11 - Supplementary Table 1.

    References: Alexandre et al, 1991, doi: 10.1242/dev.112.4.971; Boe et al, 1991, doi: 10.1016/0014-4827(91)90523-w; Gehringer, 2004, doi: 10.1016/s0014-5793(03)01447-9; Goris et al, 1989, doi: 10.1016/0014-5793(89)80198-x; Kleppe et al, 2015, doi: 10.3390/md13106505; Maton el al, 2005, doi: 10.1242/jcs.02370; Rime & Ozon, 1990, doi: 10.1016/0012-1606(90)90106-s

    Reviewer #2: Lines 12-13: the sentence "This in vitro assay thus places S81 as the sole residue in ClyARPP19 for phosphorylation by PKA." is overstated. As not all residues had been tested, please indicate that "it is likely that" or "among the residues tested", in contrast to "the sole residue in ClyARPP19".

    We realise that we had not explained clearly enough how the thiophosphorylation assay works. In this assay, γ-S-ATP will be incorporated into any amino acid of ClyARPP19 phosphorylatable by PKA. The observed thiophosphorylation of the wild-type protein, demonstrates that one or more residues are phosphorylated by PKA. This thiophosphorylation was completely prevented by mutation of a single residue, S81. This experiment thus shows that S81 is entirely responsible for phosphorylation by PKA in this assay. We have rewritten this section more clearly. Changes: Page 10, lines 18-28.

    ________________________________________________________________________________V - Figures and text related to the figures__

    Figure 1A

    Reviewer #2: *Why is mouse not included in Figure 1A? Although it might be very similar to human, given that mouse is the species that is most commonly use as a mammalian model, I believe it could be included. However, this is optional upon decision by the authors. *

    We have replaced the human sequence in Figure 1A with the mouse sequence as suggested. The sequences of each of the mouse and human ENSA/ARPP19 proteins are indeed virtually identical across mammals. Changes: Fig. 1A.

    Figure 1C

    Reviewer #2: *There should be a better explanation in the text of the results sections for the image included in in Fig1 C. Note that Clytia is not a commonly used species, therefore images should be properly explained for general readers. Please indicate in the text that ClyARPP19 mRNA is expressed in previtellogenic oocytes and not in vitellogenic, plus any additional information needed to understand the image. In addition, the detection of ARPP19 in the nerve rings is intriguing. This is mentioned in the discussion section, any idea of its function there? Please include some additional information or additional references, if they exist. *

    We have expanded the explanations of Fig. 1C in the text and in the figure legend. We have also added cartoons to the figure to help readers understand the organisation of the Clytia jellyfish and gonad. As now explained, ClyARPP19 mRNA is detected in oocytes at all stages, but the signal is much stronger in pre-vitellogenic oocytes because all cytoplasmic components including mRNAs are significantly diluted by high quantity of yolk proteins as the oocytes grow to full size. Changes: page 7, line 40 & page 8, lines 1-9 - Fig. 1C - Legend page 31, lines 19-31.

    Nothing is known about the function of ARPP19 in the Clytia nervous system. The only data linking ARPP19 and the nervous system concerns mammalian ARPP16, an alternatively spliced variant of ARPP19. ARPP16 is highly expressed in medium spiny neurons of the striatum and likely mediates effects of the neurotransmitter dopamine acting on these cells (Andrade et al, 2017; Musante et al, 2017). This point is included in the Discussion in relation to the hypothesis that PKA phosphorylation of ARPP19 proteins in animals first arose in the nervous system and only later was coopted into oocyte maturation initiation. Changes: page 16, lines 12-13 & 17-20 - page 19, lines 6-9.

    Figure 2A

    Reviewer #1: Fig. 2A (and similar plots in subsequent figures): is it really necessary to cut the x axis? Would it be possible to indicate the number of oocytes for each experiment (maybe in the legend in brackets)?

    As requested by reviewer #1, the x-axis is no longer cut. The number of oocytes for each experiment is now provided in the legend of Fig. 2A and in similar plots of Fig. 5A and 5D. Changes: Fig. 2A - Legends page 31, lines 37-38 (Fig. 2A), page 33, line 25 (Fig. 5A) - page 33, line 34 (Fig. 5D).

    Figure 2D-E (as well as Figure 6C-D and Figure 8B-C)

    Reviewer #1: *Fig. 2D (and all similar plots below): I am lacking the discrete data points that were measured. Without these it is impossible to evaluate the fits. The half-times shown in 2E are somewhat redundant, and the information could be combined on a single plot. *

    We added all the data points to the concerned plots: 2D, 6C and 8B. As recommended by reviewer #1, we combined on a single plot the phosphorylation levels and the half-times. 2D-E => 2D, 6C-D => 6C and 8B-C => 8B. Changes: Figs 2D, 6C and 8B - Legends page 32, lines 9-14 (Fig. 2D), page 34, lines 24-30 (Fig. 6C) - page 35, lines 13-18 (Fig. 8B).

    Figure 3A and 3B

    Reviewer #1: Fig. 3: why is the blot for PKA substrates cut into 3 pieces? It would be clearer to show the entire membrane.

    In western blot experiments using Clytia oocytes, the amount of material was limited so the membranes were cut into three parts. The central part was incubated sequentially in distinct antibodies. We finally incubated all three parts of the membrane with the anti-phospho-PKA substrate antibody to reveal the full spectrum of proteins recognized by this antibody. The 3 pieces in Fig. 3A therefore together make up the same original membrane. We had separated them on the figure to make it clear that the membrane had been cut. In the new presentation, the 3 pieces are shown next to each other, making it clear that all the membrane is present, with dotted lines indicating the cut zone as explained in the legend. Changes: Fig. 3A and 3B - Legend page 32, lines 22-25 (Fig. 3A), lines 30-33 (Fig. 3B) - Page 24, lines 3-6 (Methods).

    Figure 3C

    Reviewer #2: Fig. 3C needs a better explanation in the text. The way these graphs are presented is somehow confusing. The meaning of the dots is not self-explanted in the graph, and it seems that each experiment was done independently but then the complete set of results is presented. Legend says that "each dot represents one experiment" but this is difficult to read as in every analysis the figure also indicates the average and the total number of oocytes. If authors wish so, they can keep the figure as it is, but then please explain this graph better in the text, and please include statistical analysis. These results are very robust, but a comparison between the number of oocytes that go through spontaneous GVBD of lysis in the different conditions will benefit their understanding.

    This figure is intended to provide an overview of all the Clytia oocyte injection experiments that we performed, for which full details are given in Supplementary Table 1. Since these experiments were not equivalent in terms of exact timing and types of observation (or films) made and oocyte sensitivity to injection -as ascertained by buffer injections-, it is not justified to make statistical comparisons between groups. We apologise that the presentation was misleading in this respect and hope that the new version is easier to understand. We removed from the figure the average percentage of maturation for each condition between experiments to avoid any misunderstanding of the nature of the data, and rather represent the values of each experiment independently. We also now explain the data included in the figure fully in the text and figure legend. Changes: Page 9, lines 16-39 - Fig. 3C and Supplementary Table 1 - Legend page 32, lines 34-41 & page 33, lines 1-11.

    Reviewer #2: *Also, please provide in the text a plausible explanation for the cause of oocyte lysis for all experimental conditions (Fig 3C). Given that in the control experiments with buffer this effect is also observed in some oocytes, please explain if this is caused by a mechanical disruption of the oocyte during the injection. In contrast, okadaic acid induces the lysis in all the 14/14 oocytes analyzed, is this due also to the mechanical approach? Or is there other reason more related to the PP2A inhibition? *Please explain.

    These points are treated above in the response to this reviewer concerning the Results section.

    Figure 5

    Reviewer #2: In Figure 5 D-F, cited in page 9 lines 35-35. Can you provide an explanation of why the time course of meiosis resumption was delayed?

    The binding partners/effectors of XeARPP19-S109D that are involved in maintaining the prophase arrest have not yet been identified. The most probable explanation of the delay in meiotic maturation induced by ClyARPP19-S109D is that Clytia protein recognizes less efficiently these unknown ARPP19 effectors that mediate the prophase arrest. As a result, maturation would be delayed, but not blocked. This explanation was provided in the Discussion (page 17, lines 14-17) and is now mentioned in the Results section. Changes: page 11, lines 16-19.

    ________________________________________________________________________________VI - Discussion__

    Reviewer #2: Although it presents highly interesting suggestions, discussion may border on being overly speculative, especially from line 37 of page 15 till the end.

    We agree and have reduced the speculation in this part of the discussion, in particular regrouping and reformulating ideas about evolutionary scenarios in a single paragraph. Changes: page 17, lines 37-41 - page 18, lines 1-41 - page 19, lines 1-18.

    SUMMARY - ____Point by point responses to individual reviewers’ comments in their order of appearance.

    Reviewer 1

    • The figures and text could be slightly condensed down to about 6 figures. We have reduced the number of figure panels but we prefer to maintain the number of figures, because the experimental data presented in them is essential to the interpretation of our results and the overall conclusions of the article. If the journal editor would like us to reduce the number of figures, we could do this by displacing Figure 4 and some panels of other figures (to then fuse some of them) to supplementary material, but this would be a pity.

    • The exact mechanisms responsible for the reduced effect of PKA phosphorylation remain relatively vaguely defined. Indeed, in their Discussion the authors list a number of experimental approaches to address this - but I understand that these would all involve substantial efforts to address. In particular, testing chimeric constructs around the consensus PKA site and from multiple species could be very informative. As the reviewer points out, unravelling these exact mechanisms will require a large amount of additional work and is beyond the scope of the current study.

    • 2A (and similar plots in subsequent figures): is it really necessary to cut the x axis? Would it be possible to indicate the number of oocytes for each experiment (maybe in the legend in brackets)? Fig. 2A has been changed in line with the reviewer's request (as well as similar plots in Fig. 5A and 5D). *Changes: *Fig. 2A - Legends page 31, lines 37-38 (Fig. 2A), page 33, line 25 (Fig. 5A) - page 33, line 34 (Fig. 5D).

    • 2D (and all similar plots below): I am lacking the discrete data points that were measured. Without these it is impossible to evaluate the fits. The half-times shown in 2E are somewhat redundant, and the information could be combined on a single plot. Fig. 2D has been changed in line with the reviewer's request (as well as similar plots in Figs 6C-D and 8B-C). *Changes: *Fig. 2D, 6C and 8B - Legends page 32, lines 9-14 (Fig. 2D), page 34, lines 24-30 (Fig. 6C) - page 35, lines 13-18 (Fig. 8B).

    • 3: why is the blot for PKA substrates cut into 3 pieces? It would be clearer to show the entire membrane. In western blot experiments using Clytia oocytes, the amount of material was limited so the membranes were cut into three parts. The central part was incubated sequentially in distinct antibodies. We finally incubated all three parts of the membrane with the anti-phospho-PKA substrate antibody to reveal the full spectrum of proteins recognized by this antibody. The 3 pieces in Fig. 3A therefore together make up the same original membrane. In the new presentation, the 3 pieces are shown next to each other, making it clear that all the membrane is present, with dotted lines indicating the cut zone as explained in the legend. Changes:* Fig. 3A and 3B - Legend page 32, lines 22-25 (Fig. 3A), lines 30-33 (Fig. 3B) - *Page 24, lines 3-6 (Methods).

    Reviewer 2

    • Abstract needs to be simplified if wants to reach a broader range of readers. We have reworked the Abstract to make it more accessible to new readers. Changes:* Page 2.*

    • It would be interesting to include some time-references when introducing the prophase arrest of Clytia and Xenopus oocytes. This should be indicated in the introduction with a short introduction of why, and not others, were these species chosen for this study. We have expanded the Introduction to cover the issue of time-references. Fuller details are now included about the advantages of Clytia compared to other hydrozoan species. *Changes: *Page 3, lines 5-11, page 4, lines 28-35, page 5, lines 32-33, page 5, lines 21-32 & 37-39.

    • The proteins MAPK is not introduced properly, as it is first mentioned in the results section. The involvement of MAPK activation during Xenopus oocyte meiotic maturation is now introduced. *Changes: *Page 5, lines 1-5.

    • Page 4 Lines 16-17 "... no role for cAMP has been detected in meiotic resumption, which is mediated by distinct signaling pathways" Which pathways? We now give the example of the well-characterized pathway Gbg-PI3K pathway for oocyte maturation in starfish, also mentioning that in many species the pathways are still unknown. *Changes: *Page 4, lines 1-15.

    • Page 4 line 34-39. Introduction indicates that the phosphorylation of ARPP19 on S67 by Gwl is a poorly understood molecular signaling cascade (line 34). However, the positive role of ARPP19 on Cdk1 activation, through the S67 phosphorylation by Gwl, appears to be widespread across all eukaryotic mitotic and meiotic divisions studied (lines 36-37). These two sentences seem a little contradictory. The mechanisms of PP2A inhibition by Gwl-phosphorylated ARPP19 are very well studied. The part that remains mysterious concerns the upstream mechanisms. We have reworded the paragraph to make this point unambiguous. *Changes: *Page 5, lines 1-8.

    • Why is mouse not included in Figure 1A? We have replaced the human sequence in Figure 1A with the mouse sequence. *Changes: *Fig. 1A.

    • 1C: There should be a better explanation in the text of the results sections for the image included in in Fig1 C. Please indicate in the text that ClyARPP19 mRNA is expressed in previtellogenic oocytes and not in vitellogenic. We have expanded the explanations of Fig. 1C in the text. We have also added cartoons to the figure to help readers understand the organisation of the Clytia jellyfish and gonad. As now explained, ClyARPP19 mRNA is detected in oocytes at all stages, but the signal is much stronger in pre-vitellogenic oocytes because all cytoplasmic components are significantly diluted by high quantity of yolk proteins. *Changes: *page 7, line 40 & page 8, lines 1-9 - Fig. 1C - Legend page 31, lines 19-31.

    • In addition, the detection of ARPP19 in the nerve rings is intriguing. Any idea of its function there? The only data linking ARPP19 and the nervous system concerns a mammalian variant of ARPP19 that is highly expressed in the striatum. This point is included in the Discussion. __Changes: __page 16, lines 12-13 & 17-20 - page 19, lines 6-9.

    • Figure 3C. The way these graphs are presented is somehow confusing. If authors wish so, they can keep the figure as it is, but then Also, please provide in the text a plausible explanation for the cause of oocyte lysis for all experimental conditions. please explain this graph better in the text, and please include statistical analysis. This figure is intended to provide an overview of all the Clytia oocyte injection experiments, for which full details are given in Supplementary Table 1. We have modified the figure and now clarified this fully in the text and figure legend. Clytia oocytes are relatively fragile. Sensitivity of oocytes to injection varies between batches, while in general increasing injection volumes or protein concentrations increases the levels of lysis observed. We do not know exactly what causes this but it probably relates to mechanical trauma. We now explain these injection experiments more fully in the text. *Changes: *Page 9, lines 16-39 - Fig. 3C and Supplementary Table 1 - Legend page 32, lines 34-41 & page 33, lines 1-11.

    • In Figure 5 D-F, cited in page 9 lines 35-35. Can you provide an explanation of why the time course of meiosis resumption was delayed? The most probable explanation is that Clytia protein recognizes less efficiently the unknown ARPP19 effectors that mediate the prophase arrest in Xenopus. This explanation is provided in the Results section. *Changes: *page 11, line 16-19.

    • All the sections start with a long introductory paragraph. I believe this facilitates the contextualization of the experiments, but please try to summarize when possible. As requested, we have shortened or removed the introductory passages of the Results section paragraphs, which were redundant with the information given in the introduction. __Changes: __Page 7, lines 3-4 & 14-16 & 36-37 - Page 8, lines 12-15 - Page 8, lines 37-40 & Page 9, lines 1-6.

    • Page 7, Lines 14-19 present a general conclusion of the findings explained in lines 20-27. I think these results are important and they should be explained better, in my opinion they are slightly poorly described. The explanation of the experiments and the results are now more detailed and the paragraph ends with a general conclusion which came too early in the previous version. *Changes: *Page 8, lines 22-24 & 32-34.

    • Page 8, lines 16-17: "It was not possible to increase injection volumes or protein concentrations without inducing high levels of non-specific toxicity". What are the non-specific toxicity effects? How was this addressed? What fundaments this conclusion? As explained above, increasing injection volumes or protein concentrations increases the levels of lysis observed due probably to mechanical trauma. But it is important to note that at the same concentration, both Clytia and Xenopus proteins induce activation of Cdk1 and GVBD in the Xenopus oocyte.__ Changes: __Page 9, lines 16-29 - Page 32, lines 34-41 & Page 33, lines 1-11 - Supplementary Table 1.

    • Lines 25-27 of page 8. "These results suggest that PP2A inhibition is not sufficient to induce oocyte maturation in Clytia, although we cannot rule out that the quantity of OA or Gwl thiophosphorylated ARPP proteins delivered was insufficient to trigger GVBD." Please provide evidence if higher concentrations of OA or Gwl were tested to state this conclusion. High OA concentrations lead to cell lysis/apoptosis as a result of a massive deregulation of protein phosphorylation. For these reasons, we cannot increase OA concentrations over 2 µM. When injected in Xenopus oocyte at 1 or 2 µM, OA induces Cdk1 activation, but then the cell dies because PP2A has multiple substrates essential for cell life. When injected at 2 µM in Clytia oocytes, OA does not induce Cdk1 activation but promotes cell lysis. This supports the conclusion that 2 µM OA is sufficient to inhibit PP2A but that PP2A inhibition is not sufficient to induce oocyte maturation in Clytia. We have reworded the relevant text. *Changes: *Page 9, lines 31-35 - Page 32, lines 34-41 & Page 33, lines 1-11 - Supplementary Table 1.

    • Lines 12-13: the sentence "This in vitro assay thus places S81 as the sole residue in ClyARPP19 for phosphorylation by PKA." is overstated. As not all residues had been tested, please indicate that "it is likely that" or "among the residues tested", in contrast to "the sole residue in ClyARPP19". The observed thiophosphorylation of the wild-type protein demonstrates that one or more residues are phosphorylated by PKA. This thiophosphorylation was completely prevented by mutation of a single residue, S81. This experiment thus shows that S81 is entirely responsible for phosphorylation by PKA in this assay. We have rewritten this section more clearly. Changes:* Page 10, lines 18-28.*

    • Some parts of the discussion are a bit speculative. We have reduced the speculation in this part of the discussion, in particular regrouping and reformulating ideas about evolutionary scenarios into a single paragraph. *Changes: *page 17, lines 37-41 - page 18, lines 1-41 - page 19, lines 1-18.

  2. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Reply to the reviewers

    I - General criticisms

    Reviewer #1: My main criticism is unfortunately inherent to the approach: comparative studies are absolutely critical, but they can only provide a very sparse sampling of diversity. Fortunately, thanks to high-throughput sequencing, bioinformatic analyses can now be performed on a large number of species, but experimental validation is typically restricted to two or three species. The consequence of this for the present manuscript is that while the functional conservation of the Gwl site is convincingly shown, the exact mechanisms responsible for the reduced effect of PKA phosphorylation remain relatively vaguely defined. Indeed, in their Discussion the authors list a number of experimental approaches to address this - but I understand that these would all involve substantial efforts to address. In particular, testing chimeric constructs around the consensus PKA site and from multiple species could be very informative.

    We completely agree with the reviewer that comparative approaches are critical to understanding biological mechanisms, and are excited by the increasing possibilities to perform not only sequence and descriptive comparisons but functional studies across a range of emerging model organisms. We hope that more and more researchers in cell and molecular biology will profit from experimental tools and techniques now available in such species, and to pioneer new ones. Of course, and he/she rightly points out, conclusions are currently limited by the number of species studied, but comparisons between two judiciously chosen species can already be very informative. Thus, in our study, the use of Xenopus and Clytia allowed us to make significant progress towards our main objective of understanding the cAMP-PKA paradox in the control of oocyte maturation; specifically by showing both that PKA phosphorylation of Clytia ARPP19 is lower in efficiency and that the phosphorylated protein has a lower effect on oocyte maturation than the Xenopus protein. As the reviewer points out, unravelling the exact mechanisms underlying these differences will require a large amount of additional work and is beyond the scope of the current study. Actually, we have embarked on several series of experiments to this end using some of the approaches listed in the Discussion. Specifically, we are testing the biochemical and functional properties of chimeric constructs containing the consensus PKA site from various species. This is a substantial undertaking which will require one to two years to complete, but is already giving some very interesting findings.

    Reviewer #1: The figures and text could be slightly condensed down to about 6 figures.

    We have reduced the number of figure panels but we prefer to maintain the number of figures, because the experimental data presented in them is essential to the interpretation of our results and the overall conclusions of the article. If the journal editor would like us to reduce the number of figures, we could do this by displacing Figure 4 and some panels of other figures (to then fuse some of them) to supplementary material, but this would be a pity.

    ______________________________________________________________________________II - Abstract

    As recommended by Reviewer #2, we have reworked the Abstract to make it more accessible to new readers, attempting to bring out more clearly and simply the main results and conclusions of the study. We correspondingly simplified and shortened the title of the article. Changes: Page 2.

    ______________________________________________________________________________****III- Introduction points

    Reviewer #2: I believe that it would be interesting to include some time-references when introducing the prophase arrest of Clytia and Xenopus oocytes. How long is prophase arrest in Xenopus compared to Clytia or other organisms? How can this affect the prophase arrest mechanisms? It seems that the prophase arrest in Xenopus oocytes is found to be significantly more prolonged compared to Clytia and various other organisms, and also meiotic maturation proceeds much more rapidly in Clytia than in Xenopus. This should be indicated in the introduction with a short introduction of why, and not others, were these species chosen for this study.

    Differences in timing of oocyte prophase arrest and in maturation kinetics across animals are indeed highly relevant in relation to the underlying biochemical mechanisms. Unfortunately, not enough information is currently available concerning the duration of the successive phases of oocyte prophase arrest across species to make any meaningful correlations with PKA regulation of maturation initiation. We have nevertheless expanded the Introduction to cover this issue as follows:

    • We start the introduction by mentioning how the length of the prophase arrest varies across species. Changes: Page 3, lines 5-11.
    • We have added examples of species which likely have similar durations of prophase arrest but show cAMP-stimulated vs cAMP-inhibited release. Changes: Page 4, lines 28-35.
    • We have specified the temporal differences in meiotic maturation in Xenopus (3-7 hrs) and Clytia (10-15 min). Changes: Page 5, lines 32-33.

    Reviewer #2: why, and not others, were these species [Xenopus, Clytia] chosen for this study. A brief justification is included in lines 1-page 5 "..a laboratory model hydrozoan species well suited to oogenesis studies", but it does not explain why this and not other hydrozoan species like Hydra, that has also been used for meiosis studies.

    As requested by Reviewer #2, fuller details are now included about the advantages of Clytia compared to other hydrozoan species, citing several articles and recent reviews here and also in the Discussion. Changes: Page 5, lines 21-32 & 37-39.

    Hydra is a classic cnidarian experimental species and has proved an extremely useful model for regeneration and body patterning, but is not suitable for experimental studies on oocyte maturation because spawning is hard to control and fully-grown oocytes cannot easily be obtained, manipulated or observed. In contrast many hydromedusae (including Clytia, Cytaeis, and Cladonema) have daily dark/light induced spawning and accessible gonads, so provide great material for studying oogenesis and maturation. Of these, Clytia has currently by far the most advanced molecular and experimental tools.

    Reviewer #2: The proteins MAPK is not introduced properly, as it is first mentioned in the results section in line 12. Given the importance of the results provided with it, it should be presented in the introduction prior to the results section.

    As requested by Reviewer #2, the involvement of MAPK activation during Xenopus oocyte meiotic maturation is now introduced, explaining how its phosphorylation serves as a marker of Cdk1 activation. Changes: Page 5, lines 1-5.

    Reviewer #2: These sentences need a more elaborate explanation: Page 4 Lines 16-17 "... no role for cAMP has been detected in meiotic resumption, which is mediated by distinct signaling pathways" Which pathways?

    We now give the example of the well-characterized pathway Gbg-PI3K pathway for oocyte maturation initiation in the starfish. Changes: Page 4, lines 1-15.

    Reviewer #2: Page 4 line 34-39. Introduction indicates that the phosphorylation of ARPP19 on S67 by Gwl is a poorly understood molecular signaling cascade (line 34). However, the positive role of ARPP19 on Cdk1 activation, through the S67 phosphorylation by Gwl, appears to be widespread across all eukaryotic mitotic and meiotic divisions studied (lines 36-37). These two sentences seem a little contradictory. If the general pathway has been identified but the signaling cascade is still not well described, please indicate that in a clearer way.

    We apologise that the wording we used was not clear and implied that the mechanisms of PP2A inhibition by Gwl-phosphorylated ARPP19 were poorly understood. On the contrary, they are very well studied. The part that remains mysterious concerns the upstream mechanisms. We have reworded the paragraph to make this point unambiguous. Changes: Page 5, lines 1-8.

    ______________________________________________________________________________IV - Results

    Reviewer #2: The text of the results is generally well described; however, all the sections start with a long introductory paragraph. I believe this facilitates the contextualization of the experiments, but please try to summarize when possible. For example, in page 5 lines 12-25, or page 7 lines 30-37, are all introduction information.

    As requested by Reviewer #2, we have shortened or removed the introductory passages of the Results section paragraphs, which were redundant with the information given in the introduction. We did not restrict to the two examples cited by the reviewer, but have shortened all the Results passages that repeat information already provided in the Introduction. Changes: Page 7, lines 3-4 & 14-16 & 36-37 - Page 8, lines 12-15 - Page 8, lines 37-40 & Page 9, lines 1-6.

    Reviewer #2: Page 7, Lines 14-19 present a general conclusion of the findings explained in lines 20-27. I think these results are important and they should be explained better, in my opinion they are slightly poorly described.

    We have followed the reviewer's recommendation. The explanation of the experiments and the results are more detailed and the paragraph ends with a general conclusion which came too early in the previous version. Changes: Page 8, lines 22-24 & 32-34.

    Reviewer #2: Page 8, lines 16-17: "It was not possible to increase injection volumes or protein concentrations without inducing high levels of non-specific toxicity". What are the non-specific toxicity effects? How was this addressed? What fundaments this conclusion?

    Clytia oocytes are relatively fragile. Sensitivity of oocytes to injection varies between batches, while in general increasing injection volumes or protein concentrations increases the levels of lysis observed. We do not know exactly what causes this but lysis can happen either immediately following injection or during the natural exaggerated cortical contraction waves that accompany meiotic maturation, suggesting that it relates to mechanical trauma. We have expanded this paragraph and the legend of Fig. 3C to explain these injection experiments more fully in the text and to clarify these issues. Changes: Page 9, lines 16-29 - Page 32, lines 34-41 & Page 33, lines 1-11 - Supplementary Table 1.

    Same paragraph: Lines 25-27 of page 8. Text reads, "These results suggest that PP2A inhibition is not sufficient to induce oocyte maturation in Clytia, although we cannot rule out that the quantity of OA or Gwl thiophosphorylated ARPP proteins delivered was insufficient to trigger GVBD.". Please provide evidence if higher concentrations of OA or Gwl were tested to state this conclusion.

    As explained above, we could not increase the concentrations of ARPP19 protein beyond 4mg/ml. It is important to note that at the same concentration, both Clytia and Xenopus proteins induce activation of Cdk1 and GVBD in the Xenopus oocyte.

    Concerning OA, it is well documented in many systems including Xenopus, starfish and mouse oocytes as well as mammalian cell cultures, that high concentrations lead to cell lysis/apoptosis as a result of a massive deregulation of protein phosphorylation (Goris et al, 1989; Rime & Ozon, 1990; Alexandre et al, 1991; Boe et al, 1991; Gehringer, 2004; Maton el al, 2005; Kleppe et al, 2015). Specific tests in Xenopus oocytes, have shown that injecting 50 nl of 1 or 2 mM OA specifically inhibits PP2A, while injecting 5 mM also targets PP1 and higher OA concentrations inhibit all phosphatases. For these reasons, we did not increase OA concentrations over 2 mM. When injected in Xenopus oocyte at 1 or 2 mM, OA induces Cdk1 activation, GVBD but then the cell dies because PP2A has multiple substrates essential for cell life. When injected at 2 mM in Clytia oocytes, OA does not induce Cdk1 activation nor GVBD but promotes cell lysis. This supports the conclusion that 2 mM OA is sufficient to inhibit PP2A (and possibly other phosphatases) but that PP2A inhibition is not sufficient to induce oocyte maturation in Clytia.

    We have reworded the relevant text to make these points clearer. The previous statement that “we cannot rule out that the quantity of OA or Gwl thiophosphorylated ARPP proteins delivered was insufficient to trigger GVBD” has been removed because it was unnecessarily cautious in the context of the literature cited above, as now fully explained_._ Changes: Page 9, lines 31-35 - Page 32, lines 34-41 & Page 33, lines 1-11 - Supplementary Table 1.

    References: Alexandre et al, 1991, doi: 10.1242/dev.112.4.971; Boe et al, 1991, doi: 10.1016/0014-4827(91)90523-w; Gehringer, 2004, doi: 10.1016/s0014-5793(03)01447-9; Goris et al, 1989, doi: 10.1016/0014-5793(89)80198-x; Kleppe et al, 2015, doi: 10.3390/md13106505; Maton el al, 2005, doi: 10.1242/jcs.02370; Rime & Ozon, 1990, doi: 10.1016/0012-1606(90)90106-s

    Reviewer #2: Lines 12-13: the sentence "This in vitro assay thus places S81 as the sole residue in ClyARPP19 for phosphorylation by PKA." is overstated. As not all residues had been tested, please indicate that "it is likely that" or "among the residues tested", in contrast to "the sole residue in ClyARPP19".

    We realise that we had not explained clearly enough how the thiophosphorylation assay works. In this assay, γ-S-ATP will be incorporated into any amino acid of ClyARPP19 phosphorylatable by PKA. The observed thiophosphorylation of the wild-type protein, demonstrates that one or more residues are phosphorylated by PKA. This thiophosphorylation was completely prevented by mutation of a single residue, S81. This experiment thus shows that S81 is entirely responsible for phosphorylation by PKA in this assay. We have rewritten this section more clearly. Changes: Page 10, lines 18-28.

    ______________________________________________________________________________V - Figures and text related to the figures

    Figure 1A

    Reviewer #2: Why is mouse not included in Figure 1A? Although it might be very similar to human, given that mouse is the species that is most commonly use as a mammalian model, I believe it could be included. However, this is optional upon decision by the authors.

    We have replaced the human sequence in Figure 1A with the mouse sequence as suggested. The sequences of each of the mouse and human ENSA/ARPP19 proteins are indeed virtually identical across mammals. Changes: Fig. 1A.

    Figure 1C

    Reviewer #2: There should be a better explanation in the text of the results sections for the image included in in Fig1 C. Note that Clytia is not a commonly used species, therefore images should be properly explained for general readers. Please indicate in the text that ClyARPP19 mRNA is expressed in previtellogenic oocytes and not in vitellogenic, plus any additional information needed to understand the image. In addition, the detection of ARPP19 in the nerve rings is intriguing. This is mentioned in the discussion section, any idea of its function there? Please include some additional information or additional references, if they exist.

    We have expanded the explanations of Fig. 1C in the text and in the figure legend. We have also added cartoons to the figure to help readers understand the organisation of the Clytia jellyfish and gonad. As now explained, ClyARPP19 mRNA is detected in oocytes at all stages, but the signal is much stronger in pre-vitellogenic oocytes because all cytoplasmic components including mRNAs are significantly diluted by high quantity of yolk proteins as the oocytes grow to full size. Changes: page 7, line 40 & page 8, lines 1-9 - Fig. 1C - Legend page 31, lines 19-31.

    Nothing is known about the function of ARPP19 in the Clytia nervous system. The only data linking ARPP19 and the nervous system concerns mammalian ARPP16, an alternatively spliced variant of ARPP19. ARPP16 is highly expressed in medium spiny neurons of the striatum and likely mediates effects of the neurotransmitter dopamine acting on these cells (Andrade et al, 2017; Musante et al, 2017). This point is included in the Discussion in relation to the hypothesis that PKA phosphorylation of ARPP19 proteins in animals first arose in the nervous system and only later was coopted into oocyte maturation initiation. Changes: page 16, lines 12-13 & 17-20 - page 19, lines 6-9.

    Figure 2A

    Reviewer #1: Fig. 2A (and similar plots in subsequent figures): is it really necessary to cut the x axis? Would it be possible to indicate the number of oocytes for each experiment (maybe in the legend in brackets)?

    As requested by reviewer #1, the x-axis is no longer cut. The number of oocytes for each experiment is now provided in the legend of Fig. 2A and in similar plots of Fig. 5A and 5D. Changes: Fig. 2A - Legends page 31, lines 37-38 (Fig. 2A), page 33, line 25 (Fig. 5A) - page 33, line 34 (Fig. 5D).

    Figure 2D-E (as well as Figure 6C-D and Figure 8B-C)

    Reviewer #1: Fig. 2D (and all similar plots below): I am lacking the discrete data points that were measured. Without these it is impossible to evaluate the fits. The half-times shown in 2E are somewhat redundant, and the information could be combined on a single plot.

    We added all the data points to the concerned plots: 2D, 6C and 8B. As recommended by reviewer #1, we combined on a single plot the phosphorylation levels and the half-times. 2D-E => 2D, 6C-D => 6C and 8B-C => 8B. Changes: Figs 2D, 6C and 8B - Legends page 32, lines 9-14 (Fig. 2D), page 34, lines 24-30 (Fig. 6C) - page 35, lines 13-18 (Fig. 8B).

    Figure 3A and 3B

    Reviewer #1: Fig. 3: why is the blot for PKA substrates cut into 3 pieces? It would be clearer to show the entire membrane.

    In western blot experiments using Clytia oocytes, the amount of material was limited so the membranes were cut into three parts. The central part was incubated sequentially in distinct antibodies. We finally incubated all three parts of the membrane with the anti-phospho-PKA substrate antibody to reveal the full spectrum of proteins recognized by this antibody. The 3 pieces in Fig. 3A therefore together make up the same original membrane. We had separated them on the figure to make it clear that the membrane had been cut. In the new presentation, the 3 pieces are shown next to each other, making it clear that all the membrane is present, with dotted lines indicating the cut zone as explained in the legend. Changes: Fig. 3A and 3B - Legend page 32, lines 22-25 (Fig. 3A), lines 30-33 (Fig. 3B) - Page 24, lines 3-6 (Methods).

    Figure 3C

    Reviewer #2: Fig. 3C needs a better explanation in the text. The way these graphs are presented is somehow confusing. The meaning of the dots is not self-explanted in the graph, and it seems that each experiment was done independently but then the complete set of results is presented. Legend says that "each dot represents one experiment" but this is difficult to read as in every analysis the figure also indicates the average and the total number of oocytes. If authors wish so, they can keep the figure as it is, but then please explain this graph better in the text, and please include statistical analysis. These results are very robust, but a comparison between the number of oocytes that go through spontaneous GVBD of lysis in the different conditions will benefit their understanding.

    This figure is intended to provide an overview of all the Clytia oocyte injection experiments that we performed, for which full details are given in Supplementary Table 1. Since these experiments were not equivalent in terms of exact timing and types of observation (or films) made and oocyte sensitivity to injection -as ascertained by buffer injections-, it is not justified to make statistical comparisons between groups. We apologise that the presentation was misleading in this respect and hope that the new version is easier to understand. We removed from the figure the average percentage of maturation for each condition between experiments to avoid any misunderstanding of the nature of the data, and rather represent the values of each experiment independently. We also now explain the data included in the figure fully in the text and figure legend. Changes: Page 9, lines 16-39 - Fig. 3C and Supplementary Table 1 - Legend page 32, lines 34-41 & page 33, lines 1-11.

    Reviewer #2: Also, please provide in the text a plausible explanation for the cause of oocyte lysis for all experimental conditions (Fig 3C). Given that in the control experiments with buffer this effect is also observed in some oocytes, please explain if this is caused by a mechanical disruption of the oocyte during the injection. In contrast, okadaic acid induces the lysis in all the 14/14 oocytes analyzed, is this due also to the mechanical approach? Or is there other reason more related to the PP2A inhibition? Please explain.

    These points are treated above in the response to this reviewer concerning the Results section.

    Figure 5

    Reviewer #2: In Figure 5 D-F, cited in page 9 lines 35-35. Can you provide an explanation of why the time course of meiosis resumption was delayed?

    The binding partners/effectors of XeARPP19-S109D that are involved in maintaining the prophase arrest have not yet been identified. The most probable explanation of the delay in meiotic maturation induced by ClyARPP19-S109D is that Clytia protein recognizes less efficiently these unknown ARPP19 effectors that mediate the prophase arrest. As a result, maturation would be delayed, but not blocked. This explanation was provided in the Discussion (page 17, lines 14-17) and is now mentioned in the Results section. Changes: page 11, lines 16-19.

    ______________________________________________________________________________VI - Discussion

    Reviewer #2: Although it presents highly interesting suggestions, discussion may border on being overly speculative, especially from line 37 of page 15 till the end.

    We agree and have reduced the speculation in this part of the discussion, in particular regrouping and reformulating ideas about evolutionary scenarios in a single paragraph. Changes: page 17, lines 37-41 - page 18, lines 1-41 - page 19, lines 1-18.

    SUMMARY - Point by point responses to individual reviewers’ comments in their order of appearance.

    Reviewer 1

    • The figures and text could be slightly condensed down to about 6 figures.

    We have reduced the number of figure panels but we prefer to maintain the number of figures, because the experimental data presented in them is essential to the interpretation of our results and the overall conclusions of the article. If the journal editor would like us to reduce the number of figures, we could do this by displacing Figure 4 and some panels of other figures (to then fuse some of them) to supplementary material, but this would be a pity.

    • The exact mechanisms responsible for the reduced effect of PKA phosphorylation remain relatively vaguely defined. Indeed, in their Discussion the authors list a number of experimental approaches to address this - but I understand that these would all involve substantial efforts to address. In particular, testing chimeric constructs around the consensus PKA site and from multiple species could be very informative.

    As the reviewer points out, unravelling these exact mechanisms will require a large amount of additional work and is beyond the scope of the current study.

    • 2A (and similar plots in subsequent figures): is it really necessary to cut the x axis? Would it be possible to indicate the number of oocytes for each experiment (maybe in the legend in brackets)?

    Fig. 2A has been changed in line with the reviewer's request (as well as similar plots in Fig. 5A and 5D). Changes: Fig. 2A - Legends page 31, lines 37-38 (Fig. 2A), page 33, line 25 (Fig. 5A) - page 33, line 34 (Fig. 5D).

    • 2D (and all similar plots below): I am lacking the discrete data points that were measured. Without these it is impossible to evaluate the fits. The half-times shown in 2E are somewhat redundant, and the information could be combined on a single plot.

    Fig. 2D has been changed in line with the reviewer's request (as well as similar plots in Figs 6C-D and 8B-C). Changes: Fig. 2D, 6C and 8B - Legends page 32, lines 9-14 (Fig. 2D), page 34, lines 24-30 (Fig. 6C) - page 35, lines 13-18 (Fig. 8B).

    • 3: why is the blot for PKA substrates cut into 3 pieces? It would be clearer to show the entire membrane.

    In western blot experiments using Clytia oocytes, the amount of material was limited so the membranes were cut into three parts. The central part was incubated sequentially in distinct antibodies. We finally incubated all three parts of the membrane with the anti-phospho-PKA substrate antibody to reveal the full spectrum of proteins recognized by this antibody. The 3 pieces in Fig. 3A therefore together make up the same original membrane. In the new presentation, the 3 pieces are shown next to each other, making it clear that all the membrane is present, with dotted lines indicating the cut zone as explained in the legend. Changes: Fig. 3A and 3B - Legend page 32, lines 22-25 (Fig. 3A), lines 30-33 (Fig. 3B) - Page 24, lines 3-6 (Methods).

    Reviewer 2

    • Abstract needs to be simplified if wants to reach a broader range of readers.

    We have reworked the Abstract to make it more accessible to new readers. Changes: Page 2.

    • It would be interesting to include some time-references when introducing the prophase arrest of Clytia and Xenopus oocytes. This should be indicated in the introduction with a short introduction of why, and not others, were these species chosen for this study.

    We have expanded the Introduction to cover the issue of time-references. Fuller details are now included about the advantages of Clytia compared to other hydrozoan species. Changes: Page 3, lines 5-11, page 4, lines 28-35, page 5, lines 32-33, page 5, lines 21-32 & 37-39.

    • The proteins MAPK is not introduced properly, as it is first mentioned in the results section.

    The involvement of MAPK activation during Xenopus oocyte meiotic maturation is now introduced. Changes: Page 5, lines 1-5.

    • Page 4 Lines 16-17 "... no role for cAMP has been detected in meiotic resumption, which is mediated by distinct signaling pathways" Which pathways?

    We now give the example of the well-characterized pathway Gbg-PI3K pathway for oocyte maturation in starfish, also mentioning that in many species the pathways are still unknown. Changes: Page 4, lines 1-15.

    • Page 4 line 34-39. Introduction indicates that the phosphorylation of ARPP19 on S67 by Gwl is a poorly understood molecular signaling cascade (line 34). However, the positive role of ARPP19 on Cdk1 activation, through the S67 phosphorylation by Gwl, appears to be widespread across all eukaryotic mitotic and meiotic divisions studied (lines 36-37). These two sentences seem a little contradictory.

    The mechanisms of PP2A inhibition by Gwl-phosphorylated ARPP19 are very well studied. The part that remains mysterious concerns the upstream mechanisms. We have reworded the paragraph to make this point unambiguous. Changes: Page 5, lines 1-8.

    • Why is mouse not included in Figure 1A?

    We have replaced the human sequence in Figure 1A with the mouse sequence. Changes: Fig. 1A.

    • 1C: There should be a better explanation in the text of the results sections for the image included in in Fig1 C. Please indicate in the text that ClyARPP19 mRNA is expressed in previtellogenic oocytes and not in vitellogenic.

    We have expanded the explanations of Fig. 1C in the text. We have also added cartoons to the figure to help readers understand the organisation of the Clytia jellyfish and gonad. As now explained, ClyARPP19 mRNA is detected in oocytes at all stages, but the signal is much stronger in pre-vitellogenic oocytes because all cytoplasmic components are significantly diluted by high quantity of yolk proteins. Changes: page 7, line 40 & page 8, lines 1-9 - Fig. 1C - Legend page 31, lines 19-31.

    • In addition, the detection of ARPP19 in the nerve rings is intriguing. Any idea of its function there?

    The only data linking ARPP19 and the nervous system concerns a mammalian variant of ARPP19 that is highly expressed in the striatum. This point is included in the Discussion_. Changes: page 16, lines 12-13 & 17-20 - page 19, lines 6-9._

    • Figure 3C. The way these graphs are presented is somehow confusing. If authors wish so, they can keep the figure as it is, but then Also, please provide in the text a plausible explanation for the cause of oocyte lysis for all experimental conditions. please explain this graph better in the text, and please include statistical analysis.

    This figure is intended to provide an overview of all the Clytia oocyte injection experiments, for which full details are given in Supplementary Table 1. We have modified the figure and now clarified this fully in the text and figure legend. Clytia oocytes are relatively fragile. Sensitivity of oocytes to injection varies between batches, while in general increasing injection volumes or protein concentrations increases the levels of lysis observed. We do not know exactly what causes this but it probably relates to mechanical trauma. We now explain these injection experiments more fully in the text. Changes: Page 9, lines 16-39 - Fig. 3C and Supplementary Table 1 - Legend page 32, lines 34-41 & page 33, lines 1-11.

    • In Figure 5 D-F, cited in page 9 lines 35-35. Can you provide an explanation of why the time course of meiosis resumption was delayed?

    The most probable explanation is that Clytia protein recognizes less efficiently the unknown ARPP19 effectors that mediate the prophase arrest in Xenopus. This explanation is provided in the Results section. Changes: page 11, line 16-19.

    • All the sections start with a long introductory paragraph. I believe this facilitates the contextualization of the experiments, but please try to summarize when possible.

    As requested, we have shortened or removed the introductory passages of the Results section paragraphs, which were redundant with the information given in the introduction. Changes: Page 7, lines 3-4 & 14-16 & 36-37 - Page 8, lines 12-15 - Page 8, lines 37-40 & Page 9, lines 1-6.

    • Page 7, Lines 14-19 present a general conclusion of the findings explained in lines 20-27. I think these results are important and they should be explained better, in my opinion they are slightly poorly described.

    The explanation of the experiments and the results are now more detailed and the paragraph ends with a general conclusion which came too early in the previous version. Changes: Page 8, lines 22-24 & 32-34.

    • Page 8, lines 16-17: "It was not possible to increase injection volumes or protein concentrations without inducing high levels of non-specific toxicity". What are the non-specific toxicity effects? How was this addressed? What fundaments this conclusion?

    As explained above, increasing injection volumes or protein concentrations increases the levels of lysis observed due probably to mechanical trauma. But it is important to note that at the same concentration, both Clytia and Xenopus proteins induce activation of Cdk1 and GVBD in the Xenopus oocyte. Changes: Page 9, lines 16-29 - Page 32, lines 34-41 & Page 33, lines 1-11 - Supplementary Table 1.

    • Lines 25-27 of page 8. "These results suggest that PP2A inhibition is not sufficient to induce oocyte maturation in Clytia, although we cannot rule out that the quantity of OA or Gwl thiophosphorylated ARPP proteins delivered was insufficient to trigger GVBD." Please provide evidence if higher concentrations of OA or Gwl were tested to state this conclusion.

    High OA concentrations lead to cell lysis/apoptosis as a result of a massive deregulation of protein phosphorylation. For these reasons, we cannot increase OA concentrations over 2 µM. When injected in Xenopus oocyte at 1 or 2 µM, OA induces Cdk1 activation, but then the cell dies because PP2A has multiple substrates essential for cell life. When injected at 2 µM in Clytia oocytes, OA does not induce Cdk1 activation but promotes cell lysis. This supports the conclusion that 2 µM OA is sufficient to inhibit PP2A but that PP2A inhibition is not sufficient to induce oocyte maturation in Clytia. We have reworded the relevant text. Changes: Page 9, lines 31-35 - Page 32, lines 34-41 & Page 33, lines 1-11 - Supplementary Table 1.

    • Lines 12-13: the sentence "This in vitro assay thus places S81 as the sole residue in ClyARPP19 for phosphorylation by PKA." is overstated. As not all residues had been tested, please indicate that "it is likely that" or "among the residues tested", in contrast to "the sole residue in ClyARPP19".

    The observed thiophosphorylation of the wild-type protein demonstrates that one or more residues are phosphorylated by PKA. This thiophosphorylation was completely prevented by mutation of a single residue, S81. This experiment thus shows that S81 is entirely responsible for phosphorylation by PKA in this assay. We have rewritten this section more clearly. Changes: Page 10, lines 18-28.

    • Some parts of the discussion are a bit speculative.

    We have reduced the speculation in this part of the discussion, in particular regrouping and reformulating ideas about evolutionary scenarios into a single paragraph. Changes: page 17, lines 37-41 - page 18, lines 1-41 - page 19, lines 1-18.

  3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Referee #2

    Evidence, reproducibility and clarity

    Summary of the main findings of the study.

    This work presents very interesting data about the maintenance and release of the prophase arrest of oocytes during sexual reproduction. Authors approach some of the remaining questions about oocyte maturation in animals by taking a comparative approach between two species (Clytia and Xenopus) that use opposing cAMP/PKA signaling pathways to trigger oocyte maturation. To do it they focused on phosphorylation characteristics and function of the regulatory protein ARPP19 from the amphibian Xenopus and its orthologue in the hydrozoan Clytia. Results suggest that the low capacity of Clytia ARPP19 to be phosphorylated by PKA. Moreover, Clytia ARPP19 is inherently a poorer PKA substrate than Xenopus ARPP109 both in vivo and in vitro, despite the presence of a functional PKA site. In addition, the absence of functional interactors mediating its negative effects on Cdk1 activation may provide a double security allowing induction of meiosis resumption in Clytia by elevated PKA activity despite the presence of ARPP19, while additional and yet unidentified mechanisms ensure the Clytia oocyte prophase arrest.

    Minor comments: read detailed review below. Figure 1 and Figure 3 need a better explanation of the results. Abstract needs to be simplified if wants to reach a broader range of readers. Some parts of the discussion are a bit speculative.

    Overall, this work used a robust set of molecular experiments that strongly support the conclusions of the study.

    Significance

    Strengths and limitations of this work:

    The primary strength of this work lies in its innovative use of two distinct species and the integration of molecular experiments to extract conclusions from their different signaling pathways. The well-designed and executed experiments, particularly those of figures 5-9, contribute to an elaborated exploration of the topic, elucidating the underlying mechanisms with clarity. The explanation of each experiment in the results section further adds to the clarity and depth of the study.

    The abstract requires improvement, particularly from lines 10 to 21, as it becomes fully understood only after reading the entire manuscript. To make the work more accessible to new readers, it would be good to present the abstract in a more approachable manner. Figures 1C and 3C need a better explanation in the text. Additionally, some sentences would benefit from citations or further clarification in the results or discussion section. Although is presents highly interesting suggestions, discussion may border on being overly speculative, especially from line 37 of page 15 till the end.

    Detailed review

    Introduction:
    I believe that it would be interesting to include some time-references when introducing the prophase arrest of Clytia and Xenopus oocytes. How long is prophase arrest in Xenopus compared to Clytia or other organisms? How can this affect the prophase arrest mechanisms? It seems that the prophase arrest in Xenopus oocytes is found to be significantly more prolonged compared to Clytia and various other organisms, and also meiotic maturation proceeds much more rapidly in Clytia than in Xenopus. This should be indicated in the introduction with a short introduction of why, and not others, were these species chosen for this study. A brief justification is included in lines 1-page 5 "..a laboratory model hydrozoan species well suited to oogenesis studies", but it does not explain why this and not other hydrozoan species like Hydra, that has also been used for meiosis studies.
    The proteins MAPK is not introduced properly, as it is first mentioned in the results section in line 12. Given the importance of the results provided with it, it should be presented in the introduction prior to the results section.

    These sentences need a more elaborate explanation:
    Page 4 Lines 16-17 "... no role for cAMP has been detected in meiotic resumption, which is mediated by distinct signaling pathways" Which pathways?

    Page 4 line 34-39. Introduction indicates that the phosphorylation of ARPP19 on S67 by Gwl is a poorly understood molecular signaling cascade (line 34). However, the positive role of ARPP19 on Cdk1 activation, through the S67 phosphorylation by Gwl, appears to be widespread across all eukaryotic mitotic and meiotic divisions studied (lines 36-37). These two sentences seem a little contradictory. If the general pathway has been identified but the signaling cascade is still not well described, please indicate that in a clearer way.

    Results section: this review will first comment the figures, and then the text.
    Figure 1
    Why is mouse not included in Figure 1A? Although it might be very similar to human, given that mouse is the species that is most commonly use as a mammalian model, I believe it could be included. However, this is optional upon decision by the authors.
    There should be a better explanation in the text of the results sections for the image included in in Fig1 C. Note that Clytia is not a commonly used species, therefore images should be properly explained for general readers. Please indicate in the text that ClyARPP19 mRNA is expressed in previtellogenic oocytes and not in vitellogenic, plus any additional information needed to understand the image. In addition, the detection of ARPP19 in the nerve rings is intriguing. This is mentioned in the discussion section, any idea of its function there? Please include some additional information or additional references, if they exist.

    Figure 3
    The way these graphs are presented is somehow confusing. The meaning of the dots is not self-explanted in the graph, and it seems that each experiment was done independently but then the complete set of results is presented. Legend says that "each dot represents one experiment" but this is difficult to read as in every analysis the figure also indicates the average and the total number of oocytes. If authors wish so, they can keep the figure as it is, but then please explain this graph better in the text, and please include statistical analysis. These results are very robust, but a comparison between the number of oocytes that go through spontaneous GVBD of lysis in the different conditions will benefit their understanding.

    Also, please provide in the text a plausible explanation for the cause of oocyte lysis for all experimental conditions (Fig 3C). Given that in the control experiments with buffer this effect is also observed in some oocytes, please explain if this is caused by a mechanical disruption of the oocyte during the injection. In contrast, okadaic acid induces the lysis in all the 14/14 oocytes analyzed, is this due also to the mechanical approach? Or is there other reason more related to the PP2A inhibition? Please explain.

    Figure 5
    In Figure 5 D-F, cited in page 9 lines 35-35. Can you provide an explanation of why the time course of meiosis resumption was delayed?

    • The text of the results is generally well described; however, all the sections start with a long introductory paragraph. I believe this facilitates the contextualization of the experiments, but please try to summarize when possible. For example, in page 5 lines 12-25, or page 7 lines 30-37, are all introduction information.
      Page 7, Lines 14-19 present a general conclusion of the findings explained in lines 20-27. I think these results are important and they should be explained better, in my opinion they are slightly poorly described.

    Page 8, lines 16-17: "It was not possible to increase injection volumes or protein concentrations without inducing high levels of non-specific toxicity". What are the non-specific toxicity effects? How was this addressed? What fundaments this conclusion?

    Lines 25-27 of page 8. Text reads, "These results suggest that PP2A inhibition is not sufficient to induce oocyte maturation in Clytia, although we cannot rule out that the quantity of OA or Gwl thiophosphorylated ARPP proteins delivered was insufficient to trigger GVBD.". Please provide evidence if higher concentrations of OA or Gwl were tested to state this conclusion.

    Lines 12-13: the sentence "This in vitro assay thus places S81 as the sole residue in ClyARPP19 for phosphorylation by PKA." is overstated. As not all residues had been tested, please indicate that "it is likely that" or "among the residues tested", in contrast to "the sole residue in ClyARPP19".

  4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Referee #1

    Evidence, reproducibility and clarity

    In their present manuscript Meneau and coworkers investigate the evolutionary conserved functions of ARPP19 in regulation of meiotic maturation of oocytes. During meiotic maturation, the maturation hormone induces a signaling cascade ultimately leading to the activation of the master regulator, cdk1-cyclin B. within this signaling network, the phosphatase PP2A prevents cdk1 activation in immature oocytes. Upon the action of the maturation hormone, ARPP19 is activated through phosphorylation by the kinase Gwl, and then functions as a potent inhibitor of PP2A, thereby contributing to cdk1 activation. Additionally, ARPP19 is subject to a second layer of regulation: a second site is phosphorylated by the kinase PKA. Interestingly, in vertebrates this cAMP/PKA pathway prevents maturation, while in many other species the same pathway has an opposite effect and cAMP/PKA is indeed sufficient to drive maturation -- referred to as the cAMP paradox.

    The authors' major aim was to reveal the molecular basis of these diverse functions of ARPP19 in triggering meiotic maturation. Firstly, they show that the Gwl site is extremely well-conserved all across eukaryotes. They then functionally validate this by comparing the functions of Xenopus ARPP19 to its orthologue in the jellyfish Clytia hemisphaerica. They confirm that the jellyfish ARPP19 is phosphorylated on the conserved Gwl site in vitro and in frog and jellyfish oocytes, acting as a PP2A inhibitor and contributing to cdk1 activation. However, while this is sufficient to drive maturation in Xenopus, PP2A inhibition alone is not sufficient to trigger entry to meiosis in Clytia oocytes, indicating the existence of additional mechanisms. Secondly, they show that the PKA site exists and is phosphorylated both in Xenopus and Clytia. However, the Clytia protein appears to be a much worst substrate for PKA and other interactors, which explains why PKA-phosphorylated ARPP19 does not inhibit maturation either in jellyfish oocytes or when exogenously injected into Xenopus oocytes.

    I find the manuscript well-written and easy to follow. The experiments are carefully performed, well-controlled and well-documented. The data shown on the figures fully supports the conclusions drawn -- although the figures and text could be slightly condensed down to about 6 figures. Overall, I would highly recommend the manuscript for publication.

    My main criticism is unfortunately inherent to the approach: comparative studies are absolutely critical, but they can only provide a very sparse sampling of diversity. Fortunately, thanks to high-throughput sequencing, bioinformatic analyses can now be performed on a large number of species, but experimental validation is typically restricted to two or three species. The consequence of this for the present manuscript is that while the functional conservation of the Gwl site is convincingly shown, the exact mechanisms responsible for the reduced effect of PKA phosphorylation remain relatively vaguely defined. Indeed, in their Discussion the authors list a number of experimental approaches to address this - but I understand that these would all involve substantial efforts to address. In particular, testing chimeric constructs around the consensus PKA site and from multiple species could be very informative.

    In addition, I would have a few small suggestions for improving the figures:

    • Fig. 2A (and similar plots in subsequent figures): is it really necessary to cut the x axis? Would it be possible to indicate the number of oocytes for each experiment (maybe in the legend in brackets)?
    • Fig. 2D (and all similar plots below): I am lacking the discrete data points that were measured. Without these it is impossible to evaluate the fits. The half-times shown in 2E are somewhat redundant, and the information could be combined on a single plot.
    • Fig. 3: why is the blot for PKA substrates cut into 3 pieces? It would be clearer to show the entire membrane.

    Significance

    Overall, I find this study extremely important, because it is only possible to entangle the diversity of cellular mechanisms though such comparative studies. Oocyte maturation perfectly exemplifies this issue: without doubt, oocyte maturation is a fundamental process and its detailed understanding is critical. However, researchers are often discouraged by diversity across species, which indeed complicates and hinders progress, well-reflected by the name "cAMP paradox". Combined with careful bioinformatic analyses, comparative studies can elegantly resolve such "paradoxes" through resolving the evolutionary history of molecular mechanisms.