Integrated Analysis of Cross-Links and Dead-End Peptides for Enhanced Interpretation of Quantitative XL-MS

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

XL-MS provides low-resolution structural information of proteins in cells and tissues. Combined with quantitation, it can identify changes in the interactome between samples, for example, control and drug-treated cells, or young and old mice. A difference can originate from protein conformational changes altering the solvent-accessible distance separating the cross-linked residues. Alternatively, a difference can result from conformational changes localized to the cross-linked residues, for example, altering the solvent exposure or reactivity of those residues or post-translational modifications on the cross-linked peptides. In this manner, cross-linking is sensitive to a variety of protein conformational features. Dead-end peptides are cross-links attached only at one end to a protein, the other terminus being hydrolyzed. As a result, changes in their abundance reflect only conformational changes localized to the attached residue. For this reason, analyzing both quantified cross-links and their corresponding dead-end peptides can help elucidate the likely conformational changes giving rise to observed differences of cross-link abundance. We describe analysis of dead-end peptides in the XLinkDB public cross-link database and, with quantified mitochondrial data isolated from failing heart versus healthy mice, show how a comparison of abundance ratios between cross-links and their corresponding dead-end peptides can be leveraged to reveal possible conformational explanations.

Article activity feed