Higher-order assembly is a regulatory switch that promotes outer kinetochore recruitment

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

To faithfully segregate chromosomes during vertebrate mitosis, kinetochore-microtubule interactions must be restricted to a single site on each chromosome. Prior work on pair-wise kinetochore protein interactions has been unable to identify the mechanisms that prevent kinetochore formation in regions with a low density of CENP-A nucleosomes. To investigate the impact of higher-order assembly on kinetochore formation, we generated defined oligomers of the inner kinetochore protein CENP-T using two distinct, genetically engineered systems in human cells. Although individual CENP-T molecules interact poorly with other kinetochore proteins, oligomers that mimic the centromeric density of CENP-T trigger the robust formation of functional, cytoplasmic kinetochore-like particles. Both in cells and in vitro , each molecule of oligomerized CENP-T recruits substantially higher levels of outer kinetochore components than monomeric CENP-T molecules. Thus, the density-dependence of CENP-T restricts outer kinetochore recruitment to centromeres, where densely packed CENP-A recruits a high local concentration of CENP-T.

Article activity feed