Single-cycle SARS-CoV-2 vaccine elicits high protection and sterilizing immunity in hamsters

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Vaccines have been central in ending the COVID-19 pandemic, but newly emerging SARS-CoV-2 variants increasingly escape first-generation vaccine protection. To fill this gap, live particle-based vaccines mimicking natural infection aim at protecting against a broader spectrum of virus variants. We designed “single-cycle SARS-CoV-2 viruses” (SCVs) that lack essential viral genes, possess superior immune-modulatory features and provide an excellent safety profile in the Syrian hamster model. Full protection of all intranasally vaccinated animals was achieved against an autologous challenge with SARS-CoV-2 virus using an Envelope-gene-deleted vaccine candidate. By deleting key immune-downregulating genes, sterilizing immunity was achieved with an advanced candidate without virus spread to contact animals. Hence, SCVs have the potential to induce a broad and durable protection against COVID-19 superior to a natural infection.

Article activity feed