Investigating Spatiotemporal Dynamics of Cortical Activity During Language Production in the Healthy and Lesioned Brain

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Efficient language production requires rapid interactions between different brain areas. These interactions can be severely affected by brain lesions. However, the neurophysiological correlates of the spatiotemporal dynamics during language production are not well understood. The current pilot study explores differences in spatiotemporal cortical dynamics between five subjects with post-stroke aphasia and five control subjects. Electroencephalography was recorded during picture naming in both groups.

Average-based analyses (event-related potential (ERP), frequency-specific Global Field Power (GFP)), reveal a strong synchronization of cortical oscillations, especially within the first 600ms post-stimulus, with a time shift between participants with aphasia and control subjects. ERPs and the corresponding brain microstates indicate coordinated brain activity alternating mainly between frontal and occipital zones. This behavior can be described as standing waves between two main sources.

At the single-trial scale, traveling waves (TW) were identified from both phase and amplitude analyses. The spatiotemporal distribution of amplitude TW reveals subject-specific organization of several interconnected hubs. In patients with aphasia this spatial organization of TW reveals zones with no TW notably in the vicinity of stroke lesions.

The present results provide important hints for the hypothesis that TW contribute to the synchronization and communication between different brain areas especially by interconnecting cortical hubs. Moreover, our findings show that cortical dynamics is affected by brain lesions.

Contribution to the Field

  • Spatiotemporal cortical dynamics of individual trials reveals the presence of phase and amplitude traveling waves.

  • Exploration of traveling waves on the 2D cortical surface reveals the presence of interconnected epicenters or hubs in all subjects.

  • The spatiotemporal distribution of traveling waves shows a higher density in the prefrontal area for people with aphasia than for healthy subjects.

  • For subjects with aphasia, a sparser density of traveling waves is observed in the approximated lesion area.

  • Event-related potential analyses reveal a consistent alternating activity between the frontal and occipital regions.

  • Subjects with aphasia present a larger and/or delayed contribution in the delta range in the GFP patterns compared to control subjects.

  • Article activity feed