Darapladib, an inhibitor of Lp-PLA2, sensitizes cancer cells to ferroptosis by remodeling lipid metabolism
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Arachidonic and adrenic acids in the membrane play key roles in ferroptosis, but how these fatty acids are manipulated in cells is largely unknown. Here, we reveal that lipoprotein-associated phospholipase A2 (Lp-PLA2) controls intracellular phospholipid metabolism and contributes to ferroptosis resistance. A metabolic drug screen identified that darapladib (SB-480848), an inhibitor of Lp-PLA2, synergistically induced ferroptosis with GPX4 inhibitors. Notably, darapladib was able to enhance ferroptosis under lipoprotein-deficient or serum-free conditions. Furthermore, Lp-PLA2 was located in the membrane and cytoplasm and suppressed ferroptosis, suggesting the critical role of intracellular Lp-PLA2. Lipidomic analysis showed that phosphatidylethanolamine (PE) species were generally enriched, while lysophosphatidylethanolamine (lysoPE) and free fatty acid levels were reduced, upon darapladib treatment. Finally, combination treatment with darapladib and PACMA31, a GPX4 inhibitor, efficiently inhibited tumor growth in a xenograft model. Our study suggests that inhibition of Lp-PLA2 is a potential therapeutic strategy to enhance ferroptosis in cancer treatment.