Assessing the functional impact of protein binding site definition

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Many biomedical applications, such as classification of binding specificities or bioengineering, depend on the accurate definition of protein binding interfaces. Depending on the choice of method used, substantially different sets of residues can be classified as belonging to the interface of a protein. A typical approach used to verify these definitions is to mutate residues and measure the impact of these changes on binding. Besides the lack of exhaustive data this approach generates, it also suffers from the fundamental problem that a mutation introduces an unknown amount of alteration into an interface, which potentially alters the binding characteristics of the interface. In this study we explore the impact of alternative binding site definitions on the ability of a protein to recognize its cognate ligand using a pharmacophore approach, which does not affect the interface. The study also provides guidance on the minimum expected accuracy of interface definition that is required to capture the biological function of a protein.

AUTHOR SUMMARY

The residue level description or prediction of protein interfaces is a critical input for protein engineering and classification of function. However, different parametrizations of the same methods and especially alternative methods used to define the interface of a protein can return substantially different sets of residues. Typical experimental or computational methods employ mutational studies to verify interface definitions, but all these approaches inherently suffer from the problem that in order to probe the importance of any one position of an interface, an unknown amount of alteration is introduced into the very interface being studied. In this work, we employ a pharmacophore-based approach to computationally explore the consequences of defining alternative binding sites. The pharmacophore generates a hypothesis for the complementary protein binding interface, which then can be used in a search to identify the corresponding ligand from a library of candidates. The accurate ranking of cognate ligands can inform us about the biological accuracy of the interface definition. This study also provides a guideline about the minimum required accuracy of protein interface definitions that still provides a statistically significant recognition of cognate ligands above random expectation, which in turn sets a minimum expectation for interface prediction methods.

Article activity feed