Modeling suggests that multiple immunizations or infections will reveal the benefits of updating SARS-CoV-2 vaccines

This article has been Reviewed by the following groups

Read the full article

Abstract

When should vaccines to evolving pathogens such as SARS-CoV-2 be updated? Our computational models address this focusing on updating SARS-CoV-2 vaccines to the currently circulating Omicron variant. Current studies typically compare the antibody titers to the new variant following a single dose of the original-vaccine versus the updated-vaccine in previously immunized individuals. These studies find that the updated-vaccine does not induce higher titers to the vaccine-variant compared with the original-vaccine, suggesting that updating may not be needed. Our models recapitulate this observation but suggest that vaccination with the updated-vaccine generates qualitatively different humoral immunity, a small fraction of which is specific for unique epitopes to the new variant. Our simulations suggest that these new variant-specific responses could dominate following subsequent vaccination or infection with either the currently circulating or future variants. We suggest a two-dose strategy for determining if the vaccine needs updating and for vaccinating high-risk individuals.

Article activity feed

  1. SciScore for 10.1101/2022.05.21.492928: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    We now briefly mention several caveats pertaining to our study. At the current stage, we have intentionally used a relatively simple model that focuses on the magnitude of the antibody response following WU- and OM-vaccination. This is because at present, data on the dynamics following immunization and boosting is largely limited to titers of antibodies (6, 8, 37–40), serum biomarkers (8, 37, 38), and the virus inoculum (41, 42). We have much more limited data on the dynamics of different populations of cells responsible for the generation of humoral immune responses in the lymph nodes (39, 43). These would include different populations of dendritic cells, follicular CD4 T cells, as well as different populations of B cells and plasma cells (33, 34, 44–50). Further complexities specific to CoV-2 include the spatial aspect of infections of the respiratory tract (51–54) as well as the dynamics of production and distribution of antigen by mRNA based vaccines (55) as well as infections. As more data becomes available, it will be possible to construct more nuanced and refined models of the dynamics of humoral immunity as well as affinity maturation (56–62). Other directions that could be taken include modeling how protection is lost as the antibody titers elicited by the different immunizations wane. Gagne et al. showed that shortly after vaccination #3, both vaccines elicited similar levels of protection following virus challenge, and it will be important to know if and how this p...

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.