SARS-CoV-2 spike variants differ in their allosteric response to linoleic acid

This article has been Reviewed by the following groups

Read the full article

Abstract

The SARS-CoV-2 spike protein contains a fatty acid binding site, also found in some other coronaviruses (e.g. SARS-CoV), which binds linoleic acid and is functionally important. When occupied by linoleic acid, it reduces infectivity, by ‘locking’ the spike in a less infectious conformation. Here, we use dynamical-nonequilibrium molecular dynamics (D-NEMD) simulations to compare the response of spike variants to linoleic acid removal. These simulations show that the fatty acid site is coupled to functional regions of the protein, some of them far from the site (e.g. in the receptor-binding motif, N-terminal domain, the furin cleavage site located in position 679-685 and the fusion peptide-surrounding regions) and identify the allosteric networks involved in these connections. Comparison of the response of the original (‘Wuhan’) spike with four variants: Alpha, Delta, Delta plus and Omicron BA.1 show that the variants differ significantly in their response to linoleic acid removal. The allosteric connections to the fatty acid site on Alpha are generally similar to the original protein, except for the receptor-binding motif and S71-R78 region which show a weaker link to the FA site. In contrast, Omicron is the most affected variant exhibiting significant differences in the receptor-binding motif, N-terminal domain, V622-L629 and the furin cleavage site. These differences in allosteric modulation may be of functional relevance, e.g. in differences in transmissibility and virulence. Experimental comparison of the effects of linoleic acid on different variants is warranted.

Article activity feed

  1. SciScore for 10.1101/2022.04.21.489022: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.