Mathematical Modelling of COVID-19 Transmission Dynamics with Vaccination: A Case Study in Ethiopia

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Mathematical modelling is important for better understanding of disease dynamics and developing strategies to manage rapidly spreading infectious diseases. In this work, we consider a mathematical model of COVID-19 transmission with double-dose vaccination strategy to control the disease. For the analytical analysis purpose, we divided the model into two parts: model with vaccination and without vaccination. Analytical and numerical approach is employed to investigate the results. In the analytical study of the model, we have shown the local and global stability of disease-free equilibrium, existence of the endemic equilibrium and its local stability, positivity of the solution, invariant region of the solution, transcritical bifurcation of equilibrium, and sensitivity analysis of the model is conducted. From these analyses, for the full model (model with vaccination), we found that the disease-free equilibrium is globally asymptotically stable for R v < 1 and is unstable for R v > 1 . A locally stable endemic equilibrium exists for R v > 1 , which shows the persistence of the disease if the reproduction parameter is greater than unity. The model is fitted to cumulative daily infected cases and vaccinated individuals data of Ethiopia from May 1, 2021 to January 31 , 2022 . The unknown parameters are estimated using the least square method with the MATLAB built-in function “lsqcurvefit.” The basic reproduction number R 0 and controlled reproduction number R v are calculated to be R 0 = 1.17 and R v = 1.15 , respectively. Finally, we performed different simulations using MATLAB. From the simulation results, we found that it is important to reduce the transmission rate and infectivity factor of asymptomatic cases and increase the vaccination coverage and quarantine rate to control the disease transmission.

Article activity feed

  1. SciScore for 10.1101/2022.03.22.22272758: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.