Modeling predicts mechanisms altered by mutations of the SARS-CoV-2 delta and omicron variants

This article has been Reviewed by the following groups

Read the full article

Abstract

We apply our mechanistic, within-host, pre-immunity , respiratory tract infection model for unvaccinated, previously uninfected, and immune-compromised individuals. Starting from published cell infection and viral replication data for the SARS-CoV-2 alpha variant, we explore variability in outcomes of viral load and cell infection due to three plausible mechanisms altered by SARS-CoV-2 mutations of delta and omicron. We seek a mechanistic explanation of clinical test results: delta nasal infections express ∼3 orders-of-magnitude higher viral load than alpha, while omicron infections express an additional 1 to 2 orders-of-magnitude rise over delta. Model simulations reveal shortening of the eclipse phase (the time between cellular uptake of the virus and onset of infectious viral replication and shedding) alone can generate 3-5 orders-of-magnitude higher viral load within 2 days post initial infection . Higher viral replication rates by an infected cell can generate at most one order-of-magnitude rise in viral load, whereas higher cell infectability has minimal impact and lowers the viral load.

Article activity feed

  1. SciScore for 10.1101/2022.02.23.481492: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • No funding statement was detected.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.