Quantifying antibody dynamics of severe and non-severe patients with COVID-19

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

COVID-19 pandemic is a major public health threat with unanswered questions regarding the role of the immune system in the severity level of the disease. In this paper, based on antibody kinetic data of patients with different disease severity, topological data analysis highlights clear differences in the shape of antibody dynamics between three groups of patients, which were non-severe, severe, and one intermediate case of severity. Subsequently, different mathematical models were developed to quantify the dynamics between the different severity groups. The best model was the one with the lowest media value of Akaike Information Criterion for all groups of patients. Although it has been reported high IgG level in severe patients, our findings suggest that IgG antibodies in severe patients may be less effective than non-severe patients due to early B cell production and early activation of the seroconversion process from IgM to IgG antibody.

Article activity feed

  1. SciScore for 10.1101/2022.02.23.22271403: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    This package integrates various TDA tools with machine learning using an API compatible with scikit-learn and C++ implementations.
    scikit-learn
    suggested: (scikit-learn, RRID:SCR_002577)

    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.