Activation of Nedd4L Ubiquitin Ligase by FCHO2-generated Membrane Curvature

This article has been Reviewed by the following groups

Read the full article

Listed in

Log in to save this article

Abstract

The C2-WW-HECT domain ubiquitin ligase Nedd4L regulates sorting in endocytosis by mediating ubiquitination of cargo molecules, such as the epithelial sodium channel (ENaC). Defects in ENaC ubiquitination cause Liddle syndrome, a hereditary hypertension. Nedd4L is catalytically autoinhibited by an intramolecular interaction between the C2 and HECT domains, but the activation mechanism is poorly understood. Here, we show that Nedd4L is activated by membranes sculpted by FCHO2, a Bin-Amphiphysin-Rsv (BAR) domain protein that regulates endocytosis. We found that FCHO2 was required for Nedd4L-mediated ubiquitination and endocytosis of ENaC. Nedd4L co-localized with FCHO2 at clathrin-coated pits where it likely became activated. Nedd4L was specifically recruited to and activated by the FCHO2 BAR domain exogenously expressed in cells. Furthermore, we reconstituted in vitro FCHO2-induced recruitment and activation of Nedd4L. Both the recruitment and activation were mediated by membrane curvature rather than protein–protein interactions. The Nedd4L C2 domain recognized a specific degree of membrane curvature that was generated by the FCHO2 BAR domain. Consequently, this curvature activated Nedd4L by relieving autoinhibition. Thus, we show for the first time a specific functionality (i.e., recruitment and activation of an enzyme regulating cargo sorting) of membrane curvature by a BAR domain protein.

Article activity feed

  1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Reply to the reviewers

    1. General Statements [optional]

    Thank you for your letter dated on May 5, 2023 concerning our manuscript (MS# RC-2023-01906) entitled “Activation of Nedd4L Ubiquitin Ligase by FCHO2-generated Membrane Curvature.”

    We thank the reviewers for their constructive comments and suggestions. We have considered all reviewers’ comments and plan to revise our manuscript accordingly.

    We believe that our revision plan will greatly improve the quality of our manuscript.

    1. Description of the planned revisions

    __Reviewer #1 __

    I enjoyed reading the paper by Sakamoto and colleagues, where they show that Nedd4L ubiquitin ligase activity is stimulated by membranes and in particular positive membrane curvature. This paper is a conceptual advance that hopefully will be extended by many other groups where membranes topology participates in the activation of associated enzymes, giving rise to added complexity but also specificity and further compartmentalization. It is an important paper for all cell biologists to understand.

    1. My comments are all relatively minor and I hope can improve the readability of the paper, but will not alter the overall conclusion as this is well backed up. In general I would like to see more/better statistics/quantitation and better figure legends. I found that often one had to read the paper to understand a figure where reading the figure legend should suffice.

    __Reply: __According to the reviewer’s comment, we will quantify the experiments (Fig. 1C, Fig. 2, Fig. 9B, and Fig. 10B) and add descriptions of statistics (Fig. 5, Fig. 6, B and D, and Fig. 7C). We will also write better figure legends to enable the readers to easily understand experiments.

    1. This paper reminds me of a paper from Gilbert Di Paolo's lab on the activation of synaptojanin PIP2 hydrolysis by high membrane curvature. One would expect that there may be many such proteins whose activities will be dependent on their membrane environment. I find it conceptually rather likely that a protein which interacts with membranes via a C2 domain (which has membrane insertions and will thus likely be curvature sensitive) will likely show some positive curvature sensitivity. Can I suggest this paper is referenced and discussed in the light of the discussion statement "Thus, our findings provide a new concept of signal transduction in which a specific degree of membrane curvature serves as a signal for activation of an enzyme that regulates a number of substrates."

    __Reply: __According to the reviewer’s comment, we will cite the paper entitled “synaptojanin-1-mediated PI(4,5)P2 hydrolysis is modulated by membrane curvature and facilitates membrane fission” by Chang-Ileto et al. (Dev. Cell 20, 206–18 , 2011). We will also discuss this paper in the light of the discussion statement.

    1. Where the paper could be improved (or I have not understood fully). In figure 1 there is a robust endocytosis of ENaC that is FCHo2 and Nedd4L sensitive. There is a rescue for FCHo2 in a fluorescence image (unquantified), so it would be good to have the more quantitative approach of rescue with both FCHo2 and Nedd4L in the biochemical assay.

    __Reply: __Although the reviewer suggests a rescue experiment in the biochemical assay, the experiment is difficult because the transfection efficiency is low (about 50%). On the other hand, we agree with the reviewer that a quantitative approach is required in the rescue experiment (Fig. 1C). Therefore, we plan to quantify the rescue experiment for FCHO2 in the immunofluorescence assay. The reviewer also suggests a rescue experiment for Nedd4L as well as FCHO2. However, since the involvement of Nedd4L in ENaC endocytosis is well established, we do not think that the rescue experiment for Nedd4L is further required.

    1. In figure 2 there is nice co-localisation between clathrin/FCHo2 and ENaC but not with Nedd4L. It would be good to have some quantitation of the co-localisation. But also one should use a Nedd4L mutant or a mutant of ENaC and so be able to visualise co-localisation between receptor and ub-ligase. I find it strange that there is no (or much less) Nedd4L-GFP visible in the cells overexpressing ENaC... Is there an explanation? Does overexpression of ENaC lead to more auto-ubiquitination of Nedd4L. Also the Nedd4L-GFP signal in other cells is punctate, while in the next figure Myc-Nedd4L is not.

    __Reply: __According to the reviewer’s comment, we will perform quantitative colocalization analysis in Fig. 2.

    We have found that a catalytically inactive Nedd4L mutant, C922A, co-localizes with cell-surface αENaC and FCHO2 in αβγENaC-HeLa cells. According to the reviewer’s comment, these data will be added in the revised manuscript.

    In Fig. 2C, Nedd4L was transiently transfected in cells stably expressing ENaC. In Nedd4L-transfected cells, overexpression of Nedd4L stimulated ENaC internalization, resulting in the disappearance of ENaC at the cell surface. On the other hand, in non-transfected cells, cell-surface ENaC was detected. Thus, Nedd4L-negative cells are non-transfected cells (cell-surface ENaC positive cells). This explanation will be added in the revised manuscript.

    The staining pattern of Nedd4L depends on what section of the cell a confocal microscope was focused on. Nedd4L-GFP signals were punctate at the bottom section of the cell in Fig. 2, whereas Myc-Nedd4L was diffusely distributed at the upper section (cytoplasm) of the cell (Fig. 3). Thus, Nedd4L shows distribution throughout the cytoplasm and punctate staining at the bottom (cell surface). The staining pattern of Nedd4L is also affected by the expression amount of Nedd4L in cells. When Nedd4L was highly expressed in COS7 and HEK293 cells in Fig. 3, the punctate staining was hardly detected. This localization pattern of Nedd4L will be clearly described in the revised manuscript.

    1. In figure 3 it appears to me that there is co-localization between ENaC and amphiphysin. Is this not a positive piece of information? I am not sure that FBP17 is a good F-BAR domain to use given its oligomerization may well prevent membrane association of Nedd4L. Minor comment: I don't see tubules for amphiphysin in panel B.

    __Reply: __The reviewer states that there is co-localization between Nedd4L and amphiphysin1 (Fig. 3A). However, Nedd4L was not recruited to membrane tubules generated by amphiphysin1. We will clearly show that there is no colocalization between Nedd4L and amphiphysin1.

    The reviewer states that FBP17 may not be a good F-BAR domain to use because its oligomerization may well prevent membrane association of Nedd4L. However, we have shown that FCHO2 as well as FBP17 forms oligomer (Uezu et al. Genes Cells, 16, 868-878, 2011). Furthermore, we have found that FCHO2 inhibits the membrane binding and catalytic activity of Nedd4L when the PS percentage in liposomes is elevated (unpublished data and Fig. 9C). Thus, since FBP17 and FCHO2 probably have similar properties, we presume that FBP17 is a good F-BAR domain to use.

    As the reviewer pointed out, membrane tubules generated by amphiphysin1 were hardly detected in HEK293 cells (Fig. 3B). It showed punctate staining, but did not co-localized with Nedd4L. This description will be added in the revised manuscript.

    1. Figure 5: The affinity of Nedd4 C2 domain for calcium is quite high given we normally assume a cytosolic concentration of 100nM (approximate). The authors have rightly buffered the calcium with EGTA. Normally we would check that the buffering is sufficient by varying the protein concentration and making sure the affinity is still the same, so can I suggest the authors use 3 or 4 times the amount of C2 domain and make sure the curve does not change (provided liposomes are not limiting). Minor comment: How many experiments and what are error bars (SD?).

    __Reply: __According to the reviewer’s comment, we will check that the buffering is sufficient by varying the protein concentration (Fig. 5). We will also add a description of statistics to the legend to Fig. 5.

    1. Figure 6: Controls have been performed to ensure that liposomes are pelleted, according to methods. In Figure 6B can the authors show that there is the same amount of liposomes in each sample by showing more of the coomassie gel so that the reader can see the Neutravidin band is the same in each sample. Also I believe a student t-test should not be used in this experiment (but perhaps an Anova test), and in panel D there does not appear to be a description of statistics.

    __Reply: __To ensure that the same amounts of liposomes were pelleted, the reviewer suggests that we show more of the Coomassie gel to present the neutravidin bands in Fig. 6B. However, as the molecular weight of neutravidin is about 15 kDa, neutravidin run out of the gel (7% SDS-PAGE gel) where Nedd4L (As the reviewer pointed out, we will use an Anova test in Fig. 6B. We will also add a description of statistics in Fig. 6D.

    1. Figure 11: In panel B I note that the FCHo2 BAR domain on small liposomes appears to inhibit Ubiquitination. Is this consistent with the BAR domain not preventing Nedd4L binding?

    __Reply: __The FCHO2 BAR domain enhances the liposome binding and catalytic activity of Nedd4L when the strength of interaction of Nedd4L with liposomes (20% PS) is weak. In contrast, we have also found that the FCHO2 BAR domain inhibits the membrane binding and catalytic activity of Nedd4L when the interaction of Nedd4L with liposomes is increased by elevating the PS percentage in liposomes (unpublished data and Fig. 9C). The reason for the different effects of FCHO2 on Nedd4L is considered as follows: When liposomes (20% PS) are used (the interaction of Nedd4L with PS in liposomes is weak), Nedd4L binds to liposomes mainly through ENaC (Fig. 8F). The liposome binding is hardly mediated by PS. Addition of the FCHO2 BAR domain increases the strength of interaction Nedd4L with PS by generating membrane curvature. Consequently, the FCHO2 BAR domain newly induces the PS-mediated liposome binding of Nedd4L, resulting in the enhancement of liposome binding and catalytic activity of Nedd4L. On the other hand, when the interaction of Nedd4L with PS in liposomes is increased by elevating the PS percentage in liposomes (50% PS), the liposome binding of Nedd4L is mainly mediated by PS. Addition of the FCHO2 BAR domain inhibits the PS-mediated liposome binding of Nedd4L. Since both FCHO2 and Nedd4L are PS-binding proteins, they compete with each other to bind to PS in liposomes. Therefore, the results in Fig. 11B are consistent, because the interaction of Nedd4L with PS is increased by 0.05 µm pore-size liposomes. This explanation will be added in the revised manuscript.

    __Reviewer #2 __

    The authors have reported the involvement of the BAR domain-containing protein FCHO2 in the Nedd4L-mediated endocytosis of ENaC. They propose a model in which the membrane curvature induced by the BAR domain-FCHO2 relieves the auto-inhibition of E3 ligase causing its activation and recruitment. The paper describes a series of in vitro reconstituted experiments that are interesting but not fully connected with the mechanism of ENaC endocytosis. Additional experiments are needed to fully support the authors' conclusions.

    Major comments:

    1. Although the data reported by the authors regarding FCHO2 and Nedd4L involvement in ENaC endocytosis are convincing, it is suggested that the authors perform the same ENaC endocytosis assay presented in Fig.1B under conditions of FBP17 and amphiphysin1 siRNA to formally prove the selective involvement of FCHO2 in the process among other BAR-containing proteins.

    __Reply: __The reviewer suggests the same ENaC endocytosis assay presented in Fig. 1B under conditions of FBP17 and amphiphysin1 siRNA to prove the selective involvement of FCHO2 in ENaC endocytosis. There seems to be a misunderstanding. Similar to FCHO2, FBP17 and amphiphysin are well known to be involved in clathrin-mediated endocytosis. As ENaC is internalized through clathrin-mediated endocytosis, FBP17 and amphiphysin siRNA presumably inhibit ENaC endocytosis. We cannot understand the significance of FBP17 and amphiphysin1 siRNA in the ENaC endocytosis assay.

    1. According to the previous point, it will be interesting to see not only a snapshot image of the internalisation assay performed by immunofluorescence (Fig.1C) but a more quantitative analysis of the different time points (as in Fig.1B) in condition of FCHO2 siRNA and eventually FBP17 and amphiphysin1 siRNA.

    __Reply: __According to the reviewer’s comment, we will perform a quantitative analysis in Fig. 1C. The reviewer also suggests the immunofluorescence assay at the different time point in Fig. 1C. However, we show the time course of ENaC internalization in Fig. 1B. We do not think that the time course in the immunofluorescence assay is further required. As for FBP17 and amphiphysin siRNA, our response is the same as that to the comment 1 of this reviewer.

    1. In Fig.2B, overexpression of the catalytically inactive version of Nedd4L (Nedd4L C922A) would help to see Nedd4L-ENaC co-localization.

    __Reply: __This comment is the same as the comment 4 of the reviewer#1.

    1. In Fig.4D, the authors need to analyse ENaC ubiquitination in the same experimental setting as Fig. 4A instead of transfecting cells with increasing amounts of Nedd4L in the presence or absence of FCHO2 BAR. It is also recommended to include Nedd4L C922A as an additional control.

    __Reply: __The reviewer requests us to analyse ENaC ubiquitination in the same setting as Fig. 4A. However, an in vivo autoubiquitination assay is widely used to determine the catalytic activity of E3 Ub ligase, because the E3 activity is typically reflected in their autoubiquitination. Therefore, the autoubiquitination assay is sufficient to show that Nedd4L is specifically activated by membrane tubules generated by FCHO2 in cells. Furthermore, we have found it very difficult to compare ENaC ubiquitination among many GFP-BAR proteins (GFP alone, GFP-FCHO2, GFP-FBP17, amphiphysin1-GFP, GFP-FCHO2 mutant) in the same experimental setting as Fig. 4A. In Fig. 4A, three types of cDNAs (HA-Ub, Myc-Nedd4L, and GFP-BAR protein) were transfected in cells. The expression amounts of Myc-Nedd4L were similar among the GFP-BAR proteins. On the other hand, in Fig. 4D, four types of cDNA (HA-Ub, Myc-Nedd4L, GFP-BAR protein, and FLAG-αENaC) were transfected in cells. Under these conditions, it is very difficult to adjust the expression amounts of Nedd4L and αENaC among many GFP-BAR proteins. Even when comparing two GFP-BAR proteins (GFP alone and GFP-FCHO2), it was necessary to assess the expression amounts of Nedd4L by transfection with various cDNA amounts of Nedd4L (Fig. 4D). Moreover, as shown in Fig. 4D, enhancement of ENaC ubiquitination by FCHO2 is decreased at higher expression of Nedd4L (1.0 and 1.5 μg DNA), although the reason is unknown. Therefore, we are not sure that we will able to accurately analyse ENaC ubiquitination in the same setting as Fig. 4A instead of transfecting cells with increasing amounts of Nedd4L.

    According to the reviewer’s comment, we will examine the effect of Nedd4L C922A on ENaC ubiquitination.

    1. While discussing the role of hydrophobic residues in Nedd4L C2 domain,the authors never mentioned the publication by Escobedo et al., Structure 2014 (DOI:10.1016/j.str.2014.08.016), which highlighted how I37 and L38 are directly involved in Ca2+ binding. This aspect should be discussed since the authors show the importance of Ca2+ for PS binding in the sedimentation assay.

    __Reply: __According to the reviewer’s comment, we will cite the reference (Escobedo et al.) and discuss the aspect (I37 and L38 are directly involved in Ca2+ binding).

    1. As stated by the authors those two residues I37 and L38 are also involved in E3 enzyme activation by relieving C2-HECT interaction. It is important to further demonstrate the effect of these mutations on ENaC substrate.

    __Reply: __To prove that the I37 and F38 residues are involved in E3 enzyme activation by relieving C2-HECT interaction, the reviewer requests us to further demonstrate the effect of Nedd4L I37A+F38A on ENaC ubiquitination. However, these two residues are critical noy only for Nedd4L activation but also for membrane binding and curvature sensing of Nedd4L. We also show that membrane binding of Nedd4L is critical for ENaC ubiquitination. Actually, we have found that Nedd4L I37A+F38A mutant, which loses membrane binding, shows little ENaC ubiquitination (unpublished data), whereas it enhances autoubiquitination (Fig. 4C). Thus, the effect of the I37A+F38A mutant on ENaC ubiquitination is not appropriate to prove that the two residues are involved in E3 enzyme activation.

    1. There are some concerns regarding the in vitro ubiquitination assay performed in Fig.8 and following figures. The Nedd4L proteins used during the assay has been produced as His tagged at the C-terminus, it was reported (Maspero et al, Nat Struct Mol Biol 2013 DOI: 10.1038/nsmb.2566), at least for the isolated HECT domain, that modification of the C-terminal residue of the protein affects its activity. It would be important to judge the activity of the purified proteins used in the assay. Moreover, as additional control it is suggested the introduction of a mSA-ENaC PY mutant protein. The authors claimed the importance of membrane localized PY motif for recruitment and activation of Nedd4L, it would be informative to perform the experiment in presence of PY mutated ENaC.

    __Reply: __The reviewer states that there are some concerns regarding His-tagged Nedd4L proteins. We have prepared Nedd4L that has no tag at its N- or C-terminus. N-terminal GST-tagged, C-terminal untagged Nedd4L was expressed in E. coli and purified by Glutathione-Sepharose column chromatography. The GST tag was cleaved off and Nedd4L was further purified by Mono Q anion-exchange column chromatography. Using this purified sample, we have examined the catalytic activity of untagged Nedd4L. We have found that concerning Ca2+-dependency, PS-dependency, and curvature-sensing, the properties of untagged Nedd4L are similar to those of C-terminal His-tagged Nedd4L (unpublished data).

    According to the reviewer’s comment, we will perform the experiment in the presence of PY-mutated ENaC.

    1. It is not clear why increasing the concentration of PS (from 20% to 50%) the presence of BAR domain doesn't allow ENaC ubiquitination (Fig.9C), is Nedd4L not recruited to the pellet? It would be interesting to see the sedimentation experiment of Fig.9A done in presence of 50% PS.

    __Reply: __This comment is essentially the same as the comment 8 of the reviewer#1. We have found that FCHO2 BAR domain inhibits the membrane binding of Nedd4L when the PS percentage in liposomes is elevated (~50%) (unpublished data). According to the reviewer’s comment, these data will be added in the revised manuscript.

    1. This reviewer is not an expert of lipids biology, thus the explanations related to the effect of FCHO2 BAR in presence of PI(4,5)P2 (Fig. 10) or 0.05 pore-size liposomes (Fig.11) were not clear. Does FCHO2 BAR have a different effect in inducing membrane tubulation in these two conditions? Is this parameter measurable by tubulation assay?

    __Reply: __According to the reviewer’s comment, we will write more clearly the explanation related to the effect of FCHO2 BAR domain in the presence of PI(4,5)P2 or 0.05 μm pore-size liposomes.

    Minor Comments

    1. It would be appreciated if a nuclei staining panel is included in all immunofluorescence images, as it would help to identify the number of cells in the field of view (e.g., Fig. 1C, Fig. 2B).

    __Reply: __According to the reviewer’s comment, we will show immunofluorescence images to identify the number of cells in Fig. 1C and Fig. 2B.

    1. It would be recommended to include colocalization analysis, such as Pearson's correlation coefficient or Manders coefficient in immunofluorescence images.

    __Reply: __According to the reviewer comment, we plan to perform quantitative colocalization analysis in Fig. 2.

    1. It is not clear how the quantitation of mSA-ENaC ubiquitination in Fig.8D, 8C, and 9B was performed. Did the authors normalise the detected Ub signal over the amount of unmodified mSA-ENaC?

    __Reply: __We did not normalize the detected Ub signals over the amount of unmodified mSA-ENaC, because the same amount of mSA-ENaC was added in each assay. The chemiluminescence intensity of Ub signals was quantified by scanning using ImageJ. According to the reviewer’ comment, we will clearly describe how the quantification of mSA-ENaC ubiquitination was performed.

    __Reviewer #3 __

    --- Summary ---

    The manuscript by Sakamoto et al. describes how the ubiquitin ligase Nedd4L is activated by membrane curvature generated by the endocytic protein FCHO2. For their experiments, the authors use the epithelial sodium channel (ENaC) as a model Nedd4L target and CME cargo. The authors start their manuscript by showing in cells the importance of FCHo2 and Nedd4L in ENaC internalization. Using a combination of experiments in cells and biochemistry, the authors show that Nedd4L binds preferentially to membranes with the same curvature generated by FCHO2. Next, the authors show that a combination of membrane composition (PS), calcium concentration, PY domain presence and membrane curvature all act in concert to recruit Nedd4L to membranes and fully release its ubiquitination activity. Crucially, the authors show that role of FCHO2 in Nedd4L recruitment is not direct, with FCHO2 simply generating an optimal membrane curvature for Nedd4L binding. Taken together, the authors suggest a mechanism by which the curvature of early clathrin coated pits, generated by FCHO1/2 define an optimal environment for the recruitment and activation of the ubiquitin ligase Nedd4L.

    The manuscript convincingly shows the membrane curvature-dependent mechanism of Nedd4L activation. The biochemistry experiments in the manuscript are well designed and the results are of clear. The quality of these experiments is very high. The experiments in cells are, however, not of the same level of quality.

    --- Major comments ---

    1. The results do not show convincingly that Nedd4L is recruited to CCPs. There is plenty of indirect evidence, but to support the model shown in the last figure, authors need to show more than the staining in figure 2C. Live-cell imaging showing the post-FCHo2 recruitment of Nedd4L would be required. I understand that the recruitment would possibly occur in a fraction of events and may be difficult to catch. The cmeAnalysis script from the danuser lab(https://doi.org/10.1016/j.devcel.2013.06.019 can facilitate the identification of these events.

    __Reply: __According to the reviewer comment, we plan to examine by live-cell TIRF microscopy that Nedd4L is recruited to CCPs.

    1. What happens to ENaC in Nedd4L and FCHO2 knockdown cells? One would expect accumulation of the receptor on the surface.

    __Reply: __We have found that upon Nedd4L or FCHO2 knockdown, αENaC accumulates at the cell surface in αβγENaC-HeLa cells. According to the reviewer’s comment, we will show these data in the revised manuscript.

    *3) In the experiments in figure 1, it would be important to use a standard CME cargo as an internal control (transferrin). This will serve as a functional confirmation of FCHO2 knockdown and help the reader to put the Need4L knockdown experiments into the context of CME. *

    __Reply: __According to the reviewer’s comment, we will use a standard CME cargo as an internal control (transferrin).

    *4) Quantification for the rescue experiment is required (figure 1C). if not possible, at least a picture where the reader can see transfected and non-transfected cells side-by-side is necessary. *

    Reply: This comment is the same as those of the reviewer#1 (comment 3) and reviewer#2 (comment 2). According to the reviewer’s comment, we plan to quantify the rescue experiment (Fig. 1C).

    *--- Minor comments --- *

    *1) The experiments in figure 3 must be presented in order as they are in the text. For example, figure 3E is cited in the text into the context of figure 7. It is very confusing. *

    __Reply: __According to the reviewer’ s comment, we will present the experiments in Fig. 3 in order they are in the text.

    *2) A better explanation of the assay in 1C would facilitate its understanding for the non-specialist reader. The reader needs to read the methods section to understand how it was done. *

    __Reply: __According to the reviewer’ comment, we will write a better explanation of the assay in the Fig. 1C legend to enable the readers to understand how it was done.

  2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Referee #3

    Evidence, reproducibility and clarity

    Summary

    The manuscript by Sakamoto et al. describes how the ubiquitin ligase Nedd4L is activated by membrane curvature generated by the endocytic protein FCHO2. For their experiments, the authors use the epithelial sodium channel (ENaC) as a model Nedd4L target and CME cargo. The authors start their manuscript by showing in cells the importance of FCHo2 and Nedd4L in ENaC internalization. Using a combination of experiments in cells and biochemistry, the authors show that Nedd4L binds preferentially to membranes with the same curvature generated by FCHO2. Next, the authors show that a combination of membrane composition (PS), calcium concentration, PY domain presence and membrane curvature all act in concert to recruit Nedd4L to membranes and fully release its ubiquitination activity. Crucially, the authors show that role of FCHO2 in Nedd4L recruitment is not direct, with FCHO2 simply generating an optimal membrane curvature for Nedd4L binding. Taken together, the authors suggest a mechanism by which the curvature of early clathrin coated pits, generated by FCHO1/2 define an optimal environment for the recruitment and activation of the ubiquitin ligase Nedd4L.

    The manuscript convincingly shows the membrane curvature-dependent mechanism of Nedd4L activation. The biochemistry experiments in the manuscript are well designed and the results are of clear. The quality of these experiments is very high. The experiments in cells are, however, not of the same level of quality.

    Major comments

    1. The results do not show convincingly that Nedd4L is recruited to CCPs. There is plenty of indirect evidence, but to support the model shown in the last figure, authors need to show more than the staining in figure 2C. Live-cell imaging showing the post-FCHo2 recruitment of Nedd4L would be required. I understand that the recruitment would possibly occur in a fraction of events and may be difficult to catch. The cmeAnalysis script from the danuser lab(https://doi.org/10.1016/j.devcel.2013.06.019 can facilitate the identification of these events.
    2. What happens to ENaC in Nedd4L and FCHO2 knockdown cells? One would expect accumulation of the receptor on the surface.
    3. In the experiments in figure 1, it would be important to use a standard CME cargo as an internal control (transferrin). This will serve as a functional confirmation of FCHO2 knockdown and help the reader to put the Need4L knockdown experiments into the context of CME.
    4. Quantification for the rescue experiment is required (figure 1C). if not possible, at least a picture where the reader can see transfected and non-transfected cells side-by-side is necessary.

    Minor comments

    1. The experiments in figure 3 must be presented in order as they are in the text. For example, figure 3E is cited in the text into the context of figure 7. It is very confusing.
    2. A better explanation of the assay in 1C would facilitate its understanding for the non-specialist reader. The reader needs to read the methods section to understand how it was done.

    To end on a positive note - I applaud the authors for experiment 6A. It is critical to show that liposome extrusion beyond 0.2um does not guarantee liposomes at that size.

    Referee cross-commenting

    I also agree with the other comments. Nothing to add.

    Significance

    The manuscript convincingly describes a novel mechanism for the activation of the ubiquitin ligase Nedd4L. From a biochemical point of view, the manuscript is solid. However, to be able to put this mechanism in the context of a CME event, the authors need stronger evidence in cells. To be clear, I think that the results presented do suggest a CME link. However, one could argue, for example, that the results could also be explained by ubiquitination of ENaC post CME, in an endosomal compartment with similar curvature.

    Expertise of the reviewer: F-BAR proteins, endocytosis, cell biology and biochemistry.

  3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Referee #2

    Evidence, reproducibility and clarity

    The authors have reported the involvement of the BAR domain-containing protein FCHO2 in the Nedd4L-mediated endocytosis of ENaC. They propose a model in which the membrane curvature induced by the BAR domain-FCHO2 relieves the auto-inhibition of E3 ligase causing its activation and recruitment. The paper describes a series of in vitro reconstituted experiments that are interesting but not fully connected with the mechanism of ENaC endocytosis. Additional experiments are needed to fully support the authors' conclusions.

    Major comments:

    1. Although the data reported by the authors regarding FCHO2 and Nedd4L involvement in ENaC endocytosis are convincing, it is suggested that the authors perform the same ENaC endocytosis assay presented in Fig.1B under conditions of FBP17 and amphiphysin1 siRNA to formally prove the selective involvement of FCHO2 in the process among other BAR-containing proteins.
    2. According to the previous point, it will be interesting to see not only a snapshot image of the internalisation assay performed by immunofluorescence (Fig.1C) but a more quantitative analysis of the different time points (as in Fig.1B) in condition of FCHO2 siRNA and eventually FBP17 and amphiphysin1 siRNA.
    3. In Fig.2B, overexpression of the catalytically inactive version of Nedd4L (Nedd4L C922A) would help to see Nedd4L-ENaC co-localization.
    4. In Fig.4D, the authors need to analyse ENaC ubiquitination in the same experimental setting as Fig. 4A instead of transfecting cells with increasing amounts of Nedd4L in the presence or absence of FCHO2 BAR. It is also recommended to include Nedd4L C922A as an additional control.
    5. While discussing the role of hydrophobic residues in Nedd4L C2 domain, the authors never mentioned the publication by Escobedo et al., Structure 2014 (DOI:10.1016/j.str.2014.08.016), which highlighted how I37 and L38 are directly involved in Ca2+ binding. This aspect should be discussed since the authors show the importance of Ca2+ for PS binding in the sedimentation assay.
    6. As stated by the authors those two residues I37 and L38 are also involved in E3 enzyme activation by relieving C2-HECT interaction. It is important to further demonstrate the effect of these mutations on ENaC substrate.
    7. There are some concerns regarding the in vitro ubiquitination assay performed in Fig.8 and following figures. The Nedd4L proteins used during the assay has been produced as His tagged at the C-terminus, it was reported (Maspero et al, Nat Struct Mol Biol 2013 DOI: 10.1038/nsmb.2566), at least for the isolated HECT domain, that modification of the C-terminal residue of the protein affects its activity. It would be important to judge the activity of the purified proteins used in the assay. Moreover, as additional control it is suggested the introduction of a mSA-ENaC PY mutant protein. The authors claimed the importance of membrane localized PY motif for recruitment and activation of Nedd4L, it would be informative to perform the experiment in presence of PY mutated ENaC.
    8. It is not clear why increasing the concentration of PS (from 20% to 50%) the presence of BAR domain doesn't allow ENaC ubiquitination (Fig.9C), is Nedd4L not recruited to the pellet? It would be interesting to see the sedimentation experiment of Fig.9A done in presence of 50% PS.
    9. This reviewer is not an expert of lipids biology, thus the explanations related to the effect of FCHO2 BAR in presence of PI(4,5)P2 (Fig. 10) or 0.05 pore-size liposomes (Fig.11) were not clear. Does FCHO2 BAR have a different effect in inducing membrane tubulation in these two conditions? Is this parameter measurable by tubulation assay?

    Minor Comments

    1. It would be appreciated if a nuclei staining panel is included in all immunofluorescence images, as it would help to identify the number of cells in the field of view (e.g., Fig. 1C, Fig. 2B).
    2. It would be recommended to include colocalization analysis, such as Pearson's correlation coefficient or Manders coefficient in immunofluorescence images.
    3. It is not clear how the quantitation of mSA-ENaC ubiquitination in Fig. 8D, 8C, and 9B was performed. Did the authors normalise the detected Ub signal over the amount of unmodified mSA-ENaC?

    Referee cross-commenting

    I agree with the comments of other two reviewers.

    Significance

    Unfortunately do to limited knowledge of the reviewer on the lipids biology field it is difficult to judge strengths and limitations of the last part of the manuscript.

  4. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Referee #1

    Evidence, reproducibility and clarity

    I enjoyed reading the paper by Sakamoto and colleagues, where they show that Nedd4L ubiquitin ligase activity is stimulated by membranes and in particular positive membrane curvature. This paper is a conceptual advance that hopefully will be extended by many other groups where membranes topology participates in the activation of associated enzymes, giving rise to added complexity but also specificity and further compartmentmentalization. It is an importnat paper for all cell biologists to understand.

    My comments are all relatively minor and I hope can improve the readability of the paper, but will not alter the overall conclusion as this is well backed up. In general I would like to see more/better statistics/quantitation and better figure legends. I found that often one had to read the paper to understand a figure where reading the figure legend should suffice.

    This paper reminds me of a paper from Gilbert Di Paolo's lab on the activation of synaptojanin PIP2 hydrolysis by high membrane curvature. One would expect that there may be many such proteins whose activities will be dependent on their membrane environment. I find it conceptually rather likely that a protein which interacts with membranes via a C2 domain (which has membrane insertions and will thus likely be curvature sensitive) will likely show some positive curvature sensitivity. Can I suggest this paper is referenced and discussed in the light of the discussion statement "Thus, our findings provide a new concept of signal transduction in which a specific degree of membrane curvature serves as a signal for activation of an enzyme that regulates a number of substrates."

    Where the paper could be improved (or I have not understood fully) In figure 1 there is a robust endocytosis of ENaC that is FCHo2 and Nedd4L sensitive. There is a rescue for FCHo2 in a fluorescence image (unquantified), so it would be good to have the more quantitative approach of rescue with both FCHo2 and Nedd4L in the biochemical assay.

    In figure 2 there is nice co-localisation between clathrin/FCHo2 and ENaC but not with Nedd4L. It would be good to have some quantitation of the co-localisation. But also one should use a Nedd4L mutant or a mutant of ENaC and so be able to visualise co-localisation between receptor and ub-ligase. I find it strange that there is no (or much less) Nedd4L-GFP visible in the cells overexpressing ENaC... Is there an explanation? Does overexpression of ENaC lead to more auto-ubiquitination of Nedd4L. Also the Nedd4L-GFP signal in other cells is punctate, while in the next figure Myc-Nedd4L is not.

    In figure 3 it appears to me that there is co-localization between ENaC and amphiphysin. Is this not a positive piece of information? I am not sure that FBP17 is a good F-BAR domain to use given its oligomerization may well prevent membrane association of Nedd4L. Minor comment: I don't see tubules for amphiphysin in panel B.

    Figure 5: The affinity of Nedd4 C2 domain for calcium is quite high given we normally assume a cytosolic concentration of 100nM (approximate). The authors have rightly buffered the calcium with EGTA. Normally we would check that the buffering is sufficient by varying the protein concentration and making sure the affinity is still the same, so can I suggest the authors use 3 or 4 times the amount of C2 domain and make sure the curve does not change (provided liposomes are not limiting). Minor comment: How many experiments and what are error bars (SD?).

    Figure 6: Controls have been performed to ensure that liposomes are pelleted, according to methods. In Figure 6B can the authors show that there is the same amount of liposomes in each sample by showing more of the coomassie gel so that the reader can see the Neutravidin band is the same in each sample. Also I believe a student t-test should not be used in this experiment (but perhaps an Anova test), and in panel D there does not appear to be a description of statistics.

    Figure 11: In panel B I note that the FCHo2 BAR domain on small liposomes appears to inhibit Ubiquitination. Is this consistent with the BAR domain not preventing Nedd4L binding?

    Significance

    I enjoyed reading the paper by Sakamoto and colleagues, where they show that Nedd4L ubiquitin ligase activity is stimulated by membranes and in particular positive membrane curvature. This paper is a conceptual advance that hopefully will be extended by many other groups where membranes topology participates in the activation of associated enzymes, giving rise to added complexity but also specificity and further compartmentmentalization. It is an importnat paper for all cell biologists to understand.