The effects of caloric restriction on adipose tissue and metabolic health are sex- and age-dependent

This article has been Reviewed by the following groups

Read the full article See related articles

Listed in

Log in to save this article

Abstract

Caloric restriction (CR) reduces the risk of age-related diseases in numerous species, including humans. CR’s metabolic effects, including decreased adiposity and improved insulin sensitivity, are important for its broader health benefits; however, the extent and basis of sex differences in CR’s health benefits are unknown. We found that 30% CR in young (3-month-old) male mice decreased fat mass and improved glucose tolerance and insulin sensitivity, whereas these effects were blunted or absent in young females. Females’ resistance to fat loss was associated with decreased lipolysis, energy expenditure and fatty acid oxidation, and increased postprandial lipogenesis, compared to males. The sex differences in glucose homeostasis were not associated with differential glucose uptake but with altered hepatic ceramide content and substrate metabolism: compared to CR males, CR females had lower TCA cycle activity and higher blood ketone concentrations, a marker of hepatic acetyl-CoA content. This suggests that males use hepatic acetyl-CoA for the TCA cycle whereas in females it accumulates, stimulating gluconeogenesis and limiting hypoglycaemia during CR. In aged mice (18-months old), when females are anoestrus, CR decreased fat mass and improved glucose homeostasis similarly in both sexes. Finally, in a cohort of overweight and obese humans, CR-induced fat loss was also sex- and age-dependent: younger females (<45 years) resisted fat loss compared to younger males while in older subjects (>45 years) this sex difference was absent. Collectively, these studies identify age-dependent sex differences in the metabolic effects of CR and highlight adipose tissue, the liver and oestrogen as key determinants of CR’s metabolic benefits. These findings have important implications for understanding the interplay between diet and health, and for maximising the benefits of CR in humans.

Article activity feed

  1. Note: This rebuttal was posted by the corresponding author to Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Reply to the reviewers

    In this study we reveal that, in both mice and humans, the metabolic benefits of caloric restriction (CR) are sex- and age-dependent. Through a systematic review of the literature, we show that sex differences have been largely overlooked by previous CR research, a finding that Reviewer 1 highlights as “an important point”. Our results have critical implications for understanding the fundamental biology linking diet and health outcomes, as well as translational strategies to leverage the therapeutic benefits of CR in humans.

    We thank the reviewers for their helpful appraisal of our manuscript, which Reviewer 2 highlights as “a very well written paper”. Reviewer 1 emphasised the translational relevance of our findings and commented on the “systematic” nature of our study. They noted that it “was well performed”, ”is a valuable and important contribution to the field”, and “will elicit great interest in the scientific and public readership.” Indeed, the importance of sex as a biological variable is the focus of a September 2022 news feature in Nature (https://www.nature.com/articles/d41586-022-02919-x), underscoring the timeliness and relevance of our findings. Our response to the reviewers comments is outlined below, including the changes we have incorporated in a revised version of our manuscript.

    Reviewer 1 – Major Comments:

    __A) *The clinical part is definitely the weak spot in the study. I don't think that the data should be omitted, but the authors should be very careful in interpreting the data. Obvious limitations apply to this part, which need to be more directly addressed in the abstract and discussion. It feels like the data from the small-scale clinical trial is exaggerated. *__The clinical study was conducted by Prof Alex Johnstone’s group at the Rowett Institute of Nutrition and Health, University of Aberdeen. Her group are experts in the study of dietary interventions for weight loss. The study was conducted to a high standard and therefore we have the utmost confidence in the conclusions drawn from our analysis of this data.

    As we discuss in response to the reviewer’s other points below, the clinical study was primarily designed to address other outcomes and we analysed the data retrospectively to investigate if sex and age affect CR-induced weight and fat loss. This explains some of the limitations that the reviewer mentions, e.g. the relatively low numbers of younger males, and the focus on overweight and obese subjects. As requested, we have now addressed these limitations as follows:

    1. Updated the abstract to clarify that the data are from overweight and obese subjects.
    2. Updated the results to emphasise that we did a retrospective analysis of CR in overweight and obese subjects (lines 396-398).
    • Performed an additional ANCOVA analysis to test if baseline adiposity or BMI contribute to the sex differences in body mass, fat mass or fat-free mass (new Supplementary Figure 11); see Reviewer 1 Major Point D below.
    1. Updated the ‘Limitations’ section of the Discussion to highlight the retrospective nature of the human study (lines 746-748).
    2. Updated the Methods to again clarify the retrospective nature of the analysis (lines 884-885). __B) *It is important to mention in the abstract and the discussion that the human data came from obese participants. This might well influence the findings from human data. *__The human subjects were overweight or obese; this was previously stated in the methods section (line 885) and in the discussion (lines 509-511). To further clarify this, we now also mention it in the Abstract (lines 52-53) and have reiterated it in the Discussion (line 744). Importantly, the fact that humans still show age-dependent sex differences in fat loss, even when overweight and obese, supports our conclusion that this age effect in mice is not simply a consequence of aged mice being fatter than younger mice. We refer to this as the ‘baseline adiposity’ hypothesis (lines 500-518 of the Discussion). In response to point D below, we have also analysed if the loss of fat mass or fat-free mass is influenced by adiposity or BMI at baseline (pre-CR). Our analyses show that neither of these parameters explain the sex differences in loss of fat mass or fat-free mass (see new Supplementary Figure 11).

    __C) *It is very important to calculate the % calorie restriction of the human participants achieved throughout the CR study. This is crucial information to compare it to other studies. *__We have updated the Methods (lines 906-909) to explain the basis for the weight loss diet, as follows: “Participants had their basal energy requirements determined and each participant was then fed an individualised diet with a caloric content equivalent to 100% of their resting metabolic rate (Table 3). This approach was taken to standardise the diet to account for individual energy requirements and energy restriction.” We have also updated Table 3 to show the caloric intake for males and females. Note that RMR accounts for ~60-70% of total daily energy expenditure (TDEE) in adults (Martin et al., 2022), so the diet in our study would give a daily caloric deficit of around 30-40% from baseline TDEE.

    __D) *Since there is quite a wide range in the BMIs of the participants, can the authors also stratify against BMI? *__We have done this against both baseline BMI and against baseline fat mass (the latter to further test the ‘baseline adiposity’ hypothesis). We present this data in an updated Supplementary Figure 11. We find that, in males but not in females, baseline BMI or fat mass are significantly associated with the changes in fat mass or fat-free mass: surprisingly, individuals with higher baseline fat mass or BMI show less fat loss and a greater loss of fat-free mass during CR. Importantly, males and females do not significantly differ in the relationships between baseline fat mass (or BMI) and loss of fat mass or fat-free mass. This further supports our conclusion that the sex differences in fat loss are unrelated to differences in baseline adiposity. We report this in lines 409-411 of the Results and lines 513-515 of the Discussion.

    __E) There is no mention of any pre-study registration online of the clinical part (e.g. ____gov____). Was this done? __This study was done before pre-registration was a requirement for clinical trials. We retrospectively analysed the study data to investigate if sex and/or age influence the outcomes. In the updated manuscript we now state this on lines 884-885 of the Methods, as well as in the Results (line 396) and Discussion (lines 746-748).

    __F) *In the methods section the authors write "Participants were informed that the study was funded by an external commercial sponsor...". This is important information, and this is not mentioned anywhere else in the paper. Can the authors clarify this point? A commercial sponsor would, in my view, qualify for a conflict of interest that needs to be mentioned. *__We have updated the Declaration of Interests section to clarify this as follows: “The human weight loss study was funded by a food retailer; however, the company had no role in the data analysis, interpretation or conclusions presented in this paper.”

    __G) *How did the authors determine the group sizes for the clinical part? I have some doubts about the sub-group sizes. It would be valuable information if the authors had a statistical analysis plan prior conducting the study. It appears a bit, like the sub-groups were chosen at random, to match findings of the mouse data. Otherwise, there should have been a better allocation within the sub-groups (especially age). *__We agree that larger group sizes would have been preferable. This limitation reflects that the study was not originally designed to test age and sex effects on CR outcomes, but instead was analysed retrospectively to investigate the impact of these variables. As mentioned above, we have updated the text of the manuscript to highlight the retrospective nature of the analyses. In the Discussion, under ‘Limitations’, we also highlight the fact that relatively few younger subjects are included in the human study (lines 744-745).

    __H) *There's a big problem with the age stratification of the male participants in the clinical data. If I'm correct there are only 5 males 45 groupings.

    __I) *The applied protocol for CR in mice is known to provoke long fasting phases and probably elicits some effects through fasting alone, rather than the caloric deficit. There are some papers out addressing this (e.g. by deCabo, Lamming). The authors should not dismiss this fact and at least address it in their discussion. Also, given this fact, it would be thoughtful to include a database-search - not only regarding CR - but also regarding various types of intermittent fasting protocols in humans and animal studies (similar to what the authors did in the supplemental figure). *__We agree on the importance of highlighting recent studies demonstrating that prolonged daily fasting contributes to the outcomes of typical ‘single-ration’ CR protocols. We have added a new paragraph to the Discussion to address this (Lines 710-719).

    Regarding the second point, we feel that including a new literature search that addresses not only CR, but also intermittent fasting, is beyond the scope of the current manuscript. However, this is a very good idea and would be worth addressing in a future standalone review article. We have also updated our source data to include all data from our literature reviews, to help if other researchers wish to analyse according to fasting duration or other variables.

    __J) *Did the authors monitor the eating time of the mice? *__We have since done this in new cohorts of mice fed using the same CR protocol. We find that the mice consume their food within 2-3 hours, consistent with other CR studies. We have now mentioned this in the Methods section (lines 867-868).

    __K) *While CR certainly has a lot of health benefits in rodents and humans, it should be advised to raise the cautious note that it may not be beneficial for everyone in the general population. For some groups of people and in some cases (e.g. infectious diseases, pregnancy) even CR with adequate nutritional intake of micro/macronutrients might be disadvantageous. This should be mentioned clearly, as the topic gets more and more "hyped" in public media and online. *__We now highlight this important point in the opening paragraph of the introduction (lines 65-67).

    __L) *There is no indication of how the authors dealt with missing data. Statistically this can be very important, especially in cases with a low number of data points. *__In the Methods section we previously explained (lines 846-848) that “Mice were excluded from the final analysis only if there were confounding technical issues or pathologies discovered at necropsy.” No data had to be excluded from our human study and we have now stated this in the Methods (lines 897-898). For analyses involving paired or repeated-measures data (e.g. time courses of body mass or blood glucose), if data points were missing or had to be excluded for some mice then we used mixed models for the statistical analysis. We have now updated this information in the ‘Statistical analysis’ section of the Methods (lines 1047-1048). Because of the large numbers of mice used in our studies, analyses remain sufficiently well powered even if some data points were missing or had to be excluded.

    __M) *Key data from qPCR should be followed up by western blots or other means. If this was done and there was no effect, the authors should report this. Also, is there any evidence or the possibility to support these findings regarding pck1 and ppara in human samples? *__As requested, we will next use Western Blotting to assess the expression of proteins encoded by the transcripts that show sex and/or diet differences within the liver (Fig. 6A). These data will be reported in our fully revised manuscript.

    Regarding effects of CR on *PCK1 *and *PPARA *expression in human liver samples, no human CR studies have taken liver biopsies for downstream molecular analysis. Recent studies of the GTEx database confirm that hepatic gene expression in humans is highly sexually dimorphic (Oliva et al., 2020). We checked *PCK1 *and *PPARA *in the GTEx database and found that, in the liver, each of these transcripts is expressed more highly in females than in males (https://www.gtexportal.org/home/gene/PCK1 & https://www.gtexportal.org/home/gene/PPARA). While this is the opposite to what we observe in our ad libitum mice (Fig. 6A), it demonstrates that sex differences in these genes’ hepatic expression do occur in humans. The effect of CR on their hepatic expression, and whether this differs between males and females, remains to be addressed.

    N): *I think it would be very valuable to analyse the sex-differences in lipolysis directly in fat tissues. The authors concentrated on differences in hepatic mRNA profiles, but there's an obvious possibility and gap in their story. *____We agree that this would be informative. In the Discussion we cite previous research identifying sex differences in adipose lipolysis and lipogenesis and explain how this fits with our findings (lines 567-574). Since submitting our manuscript, we have begun experiments to investigate sex differences in the effects of CR on lipid metabolism and molecular pathways in adipose tissue. However, these analyses are extensive and ongoing, so we feel strongly that attempting to include them in our present paper would not only substantially delay publication, but also overload what is already a very extensive paper. Therefore, we plan to report our findings in future publications.

    __O) *Given the relatively low n and sometimes small effect sizes I fear that some of their findings won't be reproduced by other labs. Were the (mouse) data collected all at once in one cohort or did the authors pool data from different cohorts/repeats? *__We presume the reviewer means ‘relatively high n’, as most of our mouse analyses used large group sizes. The mouse data were pooled from across multiple cohorts, with ANOVA confirming that the same sex-dependent CR effects were observed within each cohort. This reproducibility across multiple cohorts is a clear strength of our study because it demonstrates the robustness of our findings. Importantly, the sex differences in fat loss, weight loss and glucose homeostasis were still observed in our much-smaller cohort of evening-fed mice (Fig. S5-S6) (n = 5-6), demonstrating that large sample sizes are not needed for other researchers to detect these effects.

    Reviewer 1 – Minor comments:

    __a) *The discussion is very extensive, and I suggest compressing the information presented there to make it more easily readable. *__We have removed some text that was more speculative, such as the paragraph discussing a possible role for ERalpha. We have also revised wording elsewhere to state things more succinctly. However, given the scope of our study we feel we cannot substantially cut down the Discussion without compromising the interpretation of our findings. We note the Reviewer two’s comment that “This is a very well written paper” and feel that attempting to compress the extensive information in the Discussion would compromise, rather than help, the readability.

    __b) *There is some confusion present in the literature regarding the nomenclature of CR/fasting interventions. Recently some reviews have summarized the different forms (e.g. Longo Nature Aging, Hofer Embo Mol Med, ...) and the authors should address this briefly. Especially the applied CR intervention in ____mice overlaps with intermittent fasting. *__We have updated the Discussion (lines 710-719) to explain how our single-ration CR protocol also incurs a prolonged intermittent fast, and how this fast per se may contribute to metabolic effects.

    c): The order of the subpanels in Figure 9 (and other figures where B is below A and so on) is confusing. Please rearrange or indicate in a visual way which panels belong to each other.

    We disagree that the order of subpanels is confusing: the panels are clearly labelled, and we find it most logical to have the absolute values shown in the top row (panels A, C and E), with the corresponding graphs of fold changes shown beneath each of these (panels B, D and F). This allows the reader to quickly compare the absolute vs fold-change data for each readout. If we had panels A-C on the top row and D-F on the second row, then the connection between graphs 9C and 9D would be less clear and comparable.

    d): Did the authors also measure cardiovascular (e.g. blood pressure) parameters? There is some evidence out there that there is an age/sex dependency during fasting/CR. This would be a nice add-on to the rather small clinical data here.

    We did measure various cardiovascular parameters for our mice but find, unlike for the metabolic outcomes, these generally don’t show sex or age differences. In our human study we measured blood pressure and heart rate before starting CR and at weeks 3 and 4 post-CR. For this response to reviewers we have summarized these human data in Figure R1. The data show that CR decreases blood pressure and heart rate in males and females (Figs. R1A-E). In the younger age group (We have decided to not include these data in the current study because we feel it is already extensive and is focused on metabolic outcomes. We instead plan to report the cardiovascular outcomes (from both humans and mice) in a separate paper.

    __e) *What was the decision basis for stratifying the human data into 45 years? *__We used 45 years as the cutoff point because this is the age when, in women, oestrogen levels begin to decline (this point was stated in lines 491-492 of the Discussion, and we now reiterate it in lines 414-415 of the Results).

    __f) *The part on aging starting in Figure 7 comes quite surprising and it is not clearly linked to the data before. A suggestion here would be to smooth the transition in the text and the authors could again perform a literature search regarding age-of-onset for CR/fasting interventions in mice and humans. *__We have added a sentence to smooth the transition to these studies (lines 363-364). We had previously done a literature search to identify the age of onset of CR interventions in mice and humans. We summarise the findings of this search in lines 452-470 and 484-495 of the Discussion. We have also updated the source data so that it includes the our review of the CR literature, allowing other researchers to interrogate this data.

    g) At the first mention of HOMA and Matsuda indices, the effect direction should be put into physiological context.

    We now mention this in lines 231-232 of the Results.

    h) There is no mention of how the PCA analyses were conducted.

    We have updated the Methods to explain that the PCA analyses were done using R. We have updated the source data to include the outputs from these analyses, as well as the underlying code. These data and code are now available here https://doi.org/10.7488/ds/3758.

    i) Were the mice aged in-house in the authors' facility or bought pre-aged from a vendor? Is it known how they were raised? If bought pre-aged, were female and male animals comparable?

    We bred and aged all mice in house. Males and females were littermates from across several cohorts. Therefore, there are no concerns about lack of comparability resulting from environmental differences.

    j)* Very minor note: I think that "focussed" has become very rarely used, even in British English. I don't know about the journal's language standards, but I would switch to the much more common "focused".*

    We have updated to ‘focused’ as requested.

    k) Figure 6B/F (PCAs) should indicate the % difference of each dimension.

    We have updated the figures to show the % variance accounted for by each principal component. We have also updated the figure legend to specify this.

    l) Limitations section: Maybe tone down on "world-leading mass spec facility". This sounds like an excuse and this statement is unsupported and doesn't add anything valuable to the section. Other limitations would include the low n, as mentioned above and the mono-centric fashion of the mouse and human experiments.

    We have addressed these points as follows:

    • Toned down the description of our mass spec facility (they are renowned for expertise in steroid hormone analysis, so we our original text was intended to highlight that our facility are not novices for this).
    • Regarding the low n for some of the human groups, we now highlight this on lines 744-745 of the Discussion.
    • We have added a new paragraph to the Discussion (lines 710-719) explaining the limitations of our CR protocol, i.e. that includes elements of both CR and intermittent fasting. Reviewer 2:

    __Point 1: *This is a very well written paper. *__We thank the reviewer for this kind comment.

    __Point 2: *Since the authors fed the animals in the morning, this is likely the reason for energy expenditure to be different in the CR vs ad lib groups. Although the authors do study the effects of night v day feeding and saw no change in the outcomes regarding weight, this fact I think should be mentioned somewhere. Also, figure 4A is expressed a W while all the other graphs are in kJ. I think it would be nice to see it all consistent. __Regarding the first point, we agree that time of feeding can influence when energy expenditure is altered, but most studies show that CR decreases overall energy expenditure regardless of time of feeding. For example, Dionne et al studied the effects of CR on energy expenditure, administering the CR diet during the night phase (Dionne et al., 2016). They found that CR mice have lower energy expenditure in the day but not in the night (Figure 3C in their paper), which is the opposite to our findings (Figure 4C). However, total energy expenditure in their study remains decreased with CR. This goes against the reviewer’s suggestion that feeding the animals in the morning “is likely the reason for energy expenditure to be different in the CR vs ad lib groups”. *We have updated our manuscript (Lines 576-581) to clarify this.

    Regarding the second point, we have updated Figure 4A to express the data in kJ (showing the average kJ, per hour, at each time point). The figure legend has been updated to reflect this.

    __Point 3: *For all the graphs, can you make the CR groups bold and not filled as it is hard to see the lighter colours. *__We have updated the graphs so that the CR groups are represented by solid lines, rather than dashed lines.

    __Point 4: *I know many investigators use them, but I am not sure how relevant HOMA-IR and the Matsuda index are in mice since they were specifically designed for humans. *__The issue of whether it is ‘correct’ to use HOMA-IR and/or Matsuda index in mice is often debated in the metabolism field. Importantly, we are not using the absolute values for HOMA-IR or Matsuda in the same way that they are used in humans; instead, we are comparing the relative values between groups because these are still physiologically meaningful. We discussed this with Dr Sam Virtue, an expert in mouse metabolic phenotyping (Virtue and Vidal-Puig, 2021), who agrees on their usefulness in this way.

    __Point 5: Something also to note is the fact that all the glucose uptake data is under basal conditions. Just because there are no differences in the basal state does not mean that there are no differences after a meal/during an insulin stimulation. I think that this needs to be discussed and the muscle and fat not completely discounted as a player in the differences seen. __We agree that CR can enhance insulin-stimulated glucose uptake but our OGTT data suggest that it is effects on fasting glucose, rather than insulin-stimulated glucose uptake, that contribute to the sex differences we observe. We have now updated the Discussion (lines 608-613) as follows, “CR enhances insulin-stimulated glucose uptake (82) and it is possible that this effect differs between the sexes. However, our second relevant finding is that, during an OGTT, CR decreases the tAUC but not the iAUC, highlighting decreases in fasting glucose, rather than insulin-stimulated glucose disposal, as the main driver of the improvements in glucose tolerance.”

    References cited in Response to Reviewers:

    Dionne, D.A., Skovso, S., Templeman, N.M., Clee, S.M., and Johnson, J.D. (2016). Caloric Restriction Paradoxically Increases Adiposity in Mice With Genetically Reduced Insulin. Endocrinology 157, 2724-2734. 10.1210/en.2016-1102.

    Martin, A., Fox, D., Murphy, C.A., Hofmann, H., and Koehler, K. (2022). Tissue losses and metabolic adaptations both contribute to the reduction in resting metabolic rate following weight loss. Int. J. Obes. 46, 1168-1175. 10.1038/s41366-022-01090-7.

    Oliva, M., Muñoz-Aguirre, M., Kim-Hellmuth, S., Wucher, V., Gewirtz, A.D.H., Cotter, D.J., Parsana, P., Kasela, S., Balliu, B., Viñuela, A., et al. (2020). The impact of sex on gene expression across human tissues. Science 369, eaba3066. 10.1126/science.aba3066.

    Virtue, S., and Vidal-Puig, A. (2021). GTTs and ITTs in mice: simple tests, complex answers. Nat Metab 3, 883-886. 10.1038/s42255-021-00414-7.

  2. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Referee #2

    Evidence, reproducibility and clarity

    Summary

    This study was investigating sex and age in calorie restriction. In part 1 the authors reviewed the literature to see the percentage of papers that still only use males as their primary animal model, of which it is still the predominant sex being investigated although there are countries that have stipulated the importance of both sexes being involved and responses compared. In human studies, both sexes are often used, but not analysed separately to give sex differences.

    In the second section, which was experimental, the authors report that sex does play an important role in the effects of 30% calorie restriction in mice with differences in both metabolic outcomes as well as in adipose tissue - with males responding and females not. Interestingly, this sex effect in mice was not found if the calorie restriction was started later in life, with both sexes responding, suggesting female sex hormones play and important role early in life in the resistance to calorie restriction. This finding was replicated in human studies, with females seemingly resistant to the weight loss effects or CR, especially in the younger age group.

    Comments

    1. This is a very well written paper
    2. Since the authors fed the animals in the morning, this is likely the reason for energy expenditure to be different in the CR vs ad lib groups. Although the authors do study the effects of night v day feeding and saw no change in the outcomes regarding weight, this fact I think should be mentioned somewhere. Also, figure 4A is expressed a W while all the other graphs are in kJ. I think it would be nice to see it all consistent.
    3. For all the graphs, can you make the CR groups bold and not filled as it is hard to see the lighter colours.
    4. I know many investigators use them, but I am not sure how relevant HOMA-IR and the matsuda index are in mice since they were specifically designed for humans.
    5. Something also to note is the fact that all the glucose uptake data is under basal conditions. Just because there are no differences in the basal state does not mean that there are no differences after a meal/during an insulin stimulation. I think that this needs to be discussed and the muscle and fat not completely discounted as a player in the differences seen.

    Significance

    Due to the lack of studies directly investigating sex and calorie restriction, I believe this is a very important manuscript.

  3. Note: This preprint has been reviewed by subject experts for Review Commons. Content has not been altered except for formatting.

    Learn more at Review Commons


    Referee #1

    Evidence, reproducibility and clarity

    Summary:

    In „The effects of caloric restriction on adipose tissue and metabolic health are sex- and age-dependent" the authors systematically studied the effects of sex and age on the response to sustained caloric restriction in mice and humans. The study was well performed and is a valuable addition to the literature. They found overlapping differences between the species when CR-data from mouse experiments and a small-scale clinical trial were stratified for sex and age. It appears that differences in the response to CR in young age in females compared to males depends on the hormonal status and is equalized in aged mice and humans. Since sex has played an underrated role so far in most studies on CR (especially in rodents), as the authors have laid out in their literature search, they make an important point.

    Major comments:

    • The clinical part is definitely the weak spot in the study. I don't think that the data should be omitted, but the authors should be very careful in interpreting the data. Obvious limitations apply to this part, which need to be more directly addressed in the abstract and discussion. It feels like the data from the small-scale clinical trial is exaggerated.
    • It is important to mention in the abstract and the discussion that the human data came from obese participants. This might well influence the findings from human data.
    • It is very important to calculate the % calorie restriction of the human participants achieved throughout the CR study. This is crucial information to compare it to other studies.
    • Since there is quite a wide range in the BMIs of the participants, can the authors also stratify against BMI?
    • There is no mention of any pre-study registration online of the clinical part (e.g. clinicaltrials.gov). Was this done?
    • In the methods section the authors write "Participants were informed that the study was funded by an external commercial sponsor...". This is important information, and this is not mentioned anywhere else in the paper. Can the authors clarify this point? A commercial sponsor would, in my view, qualify for a conflict of interest that needs to be mentioned.
    • How did the authors determine the group sizes for the clinical part? I have some doubts about the sub-group sizes. It would be valuable information if the authors had a statistical analysis plan prior conducting the study. It appears a bit, like the sub-groups were chosen at random, to match findings of the mouse data. Otherwise, there should have been a better allocation within the sub-groups (especially age).
    • There's a big problem with the age stratification of the male participants in the clinical data. If I'm correct there are only 5 males <45 years. Although this looks intriguing, this can easily be a sampling problem.
    • The applied protocol for CR in mice is known to provoke long fasting phases and probably elicits some effects through fasting alone, rather than the caloric deficit. There are some papers out addressing this (e.g. by deCabo, Lamming). The authors should not dismiss this fact and at least address it in their discussion. Also, given this fact, it would be thoughtful to include a database-search - not only regarding CR - but also regarding various types of intermittent fasting protocols in humans and animal studies (similar to what the authors did in the supplemental figure).
    • Did the authors monitor the eating time of the mice?
    • While CR certainly has a lot of health benefits in rodents and humans, it should be advised to raise the cautious note that it may not be beneficial for everyone in the general population. For some groups of people and in some cases (e.g. infectious diseases, pregnancy) even CR with adequate nutritional intake of micro/macronutrients might be disadvanteguous. This should be mentioned clearly, as the topic gets more and more "hyped" in public media and online.
    • There is no indication of how the authors dealt with missing data. Statistically this can be very important, especially in cases with a low number of data points.
    • Key data from qPCR should be followed up by western blots or other means. If this was done and there was no effect, the authors should report this. Also, is there any evidence or the possibility to support these findings regarding pck1 and ppara in human samples?
    • I think it would be very valuable to analyse the sex-differences in lipolysis directly in fat tissues. The authors concentrated on differences in hepatic mRNA profiles, but there's an obvious possibility and gap in their story.
    • Given the relatively low n and sometimes small effect sizes I fear that some of their findings won't be reproduced by other labs. Were the (mouse) data collected all at once in one cohort or did the authors pool data from different cohorts/repeats?

    Minor comments:

    • The discussion is very extensive, and I suggest compressing the information presented there to make it more easily readable.
    • There is some confusion present in the literature regarding the nomenclature of CR/fasting interventions. Recently some reviews have summarized the different forms (e.g. Longo Nature Aging, Hofer Embo Mol Med, ...) and the authors should address this briefly. Especially the applied CR intervention in mice overlaps with intermittent fasting.
    • The order of the subpanels in Figure 9 (and other figures where B is below A and so on) is confusing. Please rearrange or indicate in a visual way which panels belong to each other.
    • Did the authors also measure cardiovascular (e.g. blood pressure) parameters? There is some evidence out there that there is an age/sex dependency during fasting/CR. This would be a nice add-on to the rather small clinical data here.
    • What was the decision basis for stratifying the human data into < and >45 years?
    • The part on aging starting in Figure 7 comes quite surprising and it is not clearly linked to the data before. A suggestion here would be to smooth the transition in the text and the authors could again perform a literature search regarding age-of-onset for CR/fasting interventions in mice and humans.
    • At the first mention of HOMA and Matsuda indices, the effect direction should be put into physiological context.
    • There is no mention of how the PCA analyses were conducted.
    • Were the mice aged in-house in the authors' facility or bought pre-aged from a vendor? Is it known how they were raised? If bought pre-aged, were female and male animals comparable?
    • Very minor note: I think that "focussed" has become very rarely used, even in British English. I don't know about the journal's language standards, but I would switch to the much more common "focused".
    • Figure 6B/F (PCAs) should indicate the % difference of each dimension.
    • Limitations section: Maybe tone down on "world-leading mass spec facility". This sounds like an excuse and this statement is unsupported and doesn't add anything valuable to the section. Other limitations would include the low n, as mentioned above and the mono-centric fashion of the mouse and human experiments.

    Significance

    The authors have analysed in great depth the importance of age and sex on the outcomes of CR on fat tissue, body weight and glucose homeostasis. It is a valuable and important contribution to the field. However, some points need to be clarified and some additional analyses/experiments should be performed. The piece will elicit great interest in the scientific and public readership. The authors have collected important evidence that the majority of CR studies in the literature have a drastic sex-bias in both mice and humans. This may be one reason why translational and mechanistic findings from mice to human application have been haltered in the field of nutritional healthy-aging-promoting interventions.