Clinical severity of Omicron sub-lineage BA.2 compared to BA.1 in South Africa

This article has been Reviewed by the following groups

Read the full article See related articles

Listed in

Log in to save this article

Abstract

Early data indicated that infection with Omicron BA.1 sub-lineage was associated with a lower risk of hospitalisation and severe illness, compared to Delta infection. Recently, the BA.2 sub-lineage has increased in many areas globally. We aimed to assess the severity of BA.2 infections compared to BA.1 in South Africa. We performed data linkages for (i) national COVID-19 case data, (ii) SARS-CoV-2 laboratory test data, and (iii) COVID-19 hospitalisations data, nationally. For cases identified using TaqPath COVID-19 PCR, infections were designated as S-gene target failure (SGTF, proxy for BA.1) or S-gene positive (proxy for BA.2). Disease severity was assessed using multivariable logistic regression models comparing individuals with S-gene positive infection to SGTF-infected individuals diagnosed between 1 December 2021 to 20 January 2022. From week 49 (starting 5 December 2021) through week 4 (ending 29 January 2022), the proportion of S-gene positive infections increased from 3% (931/31,271) to 80% (2,425/3,031). The odds of being admitted to hospital did not differ between individuals with S-gene positive (BA.2 proxy) infection compared to SGTF (BA.1 proxy) infection (adjusted odds ratio (aOR) 0.96, 95% confidence interval (CI) 0.85-1.09). Among hospitalised individuals, after controlling for factors associated with severe disease, the odds of severe disease did not differ for individuals with S-gene positive infection compared to SGTF infection (aOR 0.91, 95%CI 0.68-1.22). These data suggest that while BA.2 may have a competitive advantage over BA.1 in some settings, the clinical profile of illness remains similar.

Article activity feed

  1. SciScore for 10.1101/2022.02.17.22271030: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.