Distinct Core Glycan and O-Glycoform Utilization of SARS-CoV-2 Omicron Variant Spike Protein RBD Revealed by Top-Down Mass Spectrometry

This article has been Reviewed by the following groups

Read the full article

Abstract

The SARS-CoV-2 Omicron (B.1.1.529) variant possesses numerous spike (S) mutations particularly in the S receptor-binding domain (S-RBD) that significantly improve transmissibility and evasion of neutralizing antibodies. But exactly how the mutations in the Omicron variant enhance viral escape from immunological protection remains to be understood. The S-RBD remains the principal target for neutralizing antibodies and therapeutics, thus new structural insights into the Omicron S-RBD and characterization of the post-translational glycosylation changes can inform rational design of vaccines and therapeutics. Here we report the molecular variations and O-glycoform changes of the Omicron S-RBD variant as compared to wild-type (WA1/2020) and Delta (B.1.617.2) variants using high-resolution top-down mass spectrometry (MS). A novel O-glycosite (Thr376) unique to the Omicron variant is identified. Moreover, we have directly quantified the Core 1 and Core 2 O-glycan structures and characterized the O-glycoform structural heterogeneity of the three variants. Our findings reveal high resolution detail of Omicron O-glycoforms and their utilization to provide direct molecular evidence of proteoform alterations in the Omicron variant which could shed light on how this variant escapes immunological protection.

Article activity feed

  1. SciScore for 10.1101/2022.02.09.479776: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    Ethicsnot detected.
    Sex as a biological variablenot detected.
    Randomizationnot detected.
    Blindingnot detected.
    Power Analysisnot detected.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.