Increasing viral transmission paradoxically reduces progression rates to severe COVID-19 during endemic transition

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

Natural infection with SARS-CoV-2 or vaccination induces virus-specific immunity protecting hosts from infection and severe disease. While the infection-preventing immunity gradually declines, the severity-reducing immunity is relatively well preserved. Here, based on the different longevity of these distinct immunities, we develop a mathematical model to estimate courses of endemic transition of COVID-19. Our analysis demonstrates that high viral transmission unexpectedly reduces the rates of progression to severe COVID-19 during the course of endemic transition despite increased numbers of infection cases. Our study also shows that high viral transmission amongst populations with high vaccination coverages paradoxically accelerates the endemic transition of COVID-19 with reduced numbers of severe cases. These results provide critical insights for driving public health policies in the era of ‘living with COVID-19’.

Article activity feed

  1. SciScore for 10.1101/2022.02.09.22270633: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: Thank you for sharing your code and data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.