Risk factors for severe COVID-19 differ by age for hospitalized adults
This article has been Reviewed by the following groups
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
- Evaluated articles (ScreenIT)
Abstract
Risk stratification for hospitalized adults with COVID-19 is essential to inform decisions about individual patients and allocation of resources. So far, risk models for severe COVID outcomes have included age but have not been optimized to best serve the needs of either older or younger adults. Models also need to be updated to reflect improvements in COVID-19 treatments. This retrospective study analyzed data from 6906 hospitalized adults with COVID-19 from a community health system across five states in the western United States. Risk models were developed to predict mechanical ventilation illness or death across one to 56 days of hospitalization, using clinical data available within the first hour after either admission with COVID-19 or a first positive SARS-CoV-2 test. For the seven-day interval, models for age ≥ 18 and < 50 years reached AUROC 0.81 (95% CI 0.71–0.91) and models for age ≥ 50 years reached AUROC 0.82 (95% CI 0.77–0.86). Models revealed differences in the statistical significance and relative predictive value of risk factors between older and younger patients including age, BMI, vital signs, and laboratory results. In addition, for hospitalized patients, sex and chronic comorbidities had lower predictive value than vital signs and laboratory results.
Article activity feed
-
-
SciScore for 10.1101/2022.02.02.22270287: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources All statistical analyses were completed using PySpark version 2.4.5. PySparksuggested: NoneAll ML models were applied using Spark version 2.4.5, in the Python interface. Sparksuggested: (Spark, RRID:SCR_006207)Pythonsuggested: (IPython, RRID:SCR_001658)Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:Five limitations of this retrospective study are: 1) reliance on EHR …
SciScore for 10.1101/2022.02.02.22270287: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources All statistical analyses were completed using PySpark version 2.4.5. PySparksuggested: NoneAll ML models were applied using Spark version 2.4.5, in the Python interface. Sparksuggested: (Spark, RRID:SCR_006207)Pythonsuggested: (IPython, RRID:SCR_001658)Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:Five limitations of this retrospective study are: 1) reliance on EHR structured data which can miss medical conditions that not diagnosed, not recorded, or noted only in free text, 2) use of hospital reported race and ethnicity of patients31 as opposed to direct per-patient measures of potential confounders (genetic information, disparities in healthcare, and individual lifetime history of beneficial and harmful exposures, 4) use of data from within a single healthcare system. Concerns regarding generalizability of this study are partially mitigated by the size and diversity of PSJH, which serves both urban and rural communities from California to Alaska. Future investigations will benefit from finer granularity of subdivisions by age, BMI, and more detailed variables on conditions and drugs that affect individual immune response.
Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
Results from scite Reference Check: We found no unreliable references.
-
