Building programmable multicompartment artificial cells incorporating remotely activated protein channels using microfluidics and acoustic levitation

Read the full article

Abstract

Intracellular compartments are functional units that support the metabolic processes within living cells, through spatiotemporal regulation of chemical reactions and biological processes. Consequently, as a step forward in the bottom-up creation of artificial cells, building analogous intracellular architectures is essential for the expansion of cell-mimicking functionality. Herein, we report the development of a droplet laboratory platform to engineer customised complex emulsion droplets as a multicompartment artificial cell chassis, using multiphase microfluidics and acoustic levitation. Such levitated constructs provide free-standing, dynamic, definable droplet networks for the encapsulation and organisation of chemical species. Equally, they can be remotely operated with pneumatic, heating, and magnetic elements for post-processing, including the incorporation of membrane proteins; alpha-hemolysin; and large-conductance mechanosensitive channel (MscL) and their activation. The assembly of droplet networks is three-dimensionally patterned with fluidic inputs configurations determining droplet contents and connectivity. Whilst acoustic manipulation can be harnessed to reconfigure the droplet network in situ . In addition, a mechanosensitive channel, MscL, can be repeatedly activated and deactivated in the levitated artificial cell by the application of acoustic and magnetic fields to modulate membrane tension on demand. This offers possibilities beyond one-time chemically mediated activation to provide repeated, non-contact control of membrane protein function. Collectively, this will expand our capability to program and operate increasingly sophisticated artificial cells as life-like materials.

Article activity feed