Structural and computational insights into the SARS-CoV-2 Omicron RBD-ACE2 interaction

This article has been Reviewed by the following groups

Read the full article

Abstract

Since SARS-CoV-2 Omicron variant (B.1.1.529) was reported in November 2021, it has quickly spread to many countries and outcompeted the globally dominant Delta variant in several countries. The Omicron variant contains the largest number of mutations to date, with 32 mutations located at spike (S) glycoprotein, which raised great concern for its enhanced viral fitness and immune escape [1–4] . In this study, we reported the crystal structure of the receptor binding domain (RBD) of Omicron variant S glycoprotein bound to human ACE2 at a resolution of 2.6 Å. Structural comparison, molecular dynamics simulation and binding free energy calculation collectively identified four key mutations (S477N, G496S, Q498R and N501Y) for the enhanced binding of ACE2 by the Omicron RBD compared to the WT RBD. Representative states of the WT and Omicron RBD-ACE2 systems were identified by Markov State Model, which provides a dynamic explanation for the enhanced binding of Omicron RBD. The effects of the mutations in the RBD for antibody recognition were analyzed, especially for the S371L/S373P/S375F substitutions significantly changing the local conformation of the residing loop to deactivate several class IV neutralizing antibodies.

Article activity feed

  1. SciScore for 10.1101/2022.01.03.474855: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    Software and Algorithms
    SentencesResources
    Structure determination and refinement: The structure was determined using the molecular replacement method with PHASER in the CCP4 suite[27].
    CCP4
    suggested: (CCP4, RRID:SCR_007255)

    Results from OddPub: Thank you for sharing your data.


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).


    Results from JetFighter: Please consider improving the rainbow (“jet”) colormap(s) used on page 14. At least one figure is not accessible to readers with colorblindness and/or is not true to the data, i.e. not perceptually uniform.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    Results from scite Reference Check: We found no unreliable references.


    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.